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Abstract

There exist a number of R packages that perform model averaging (see AICcmodavg,
BMA, glmulti and MuMLn by way of illustration). Though existing packages contain a
rich set of features, they rely on the practitioner to supply the set of candidate models
and they tend to focus on parameters common to all candidate models (i.e., coefficients on
linear predictors). The ma package takes a somewhat different approach. Using heuristics
that can be modified by the user, we strive to automatically generate a rich set of candi-
date models that are subsequently averaged, and we avoid focusing on parameters per se,
instead focusing on conditional mean models, their derivatives, and nonparametric infer-
ential procedures. Categorical predictors can be modelled in a variety of ways including a
kernel-smoothed varying coefficient approach. The resulting models are competitive with
fully nonparametric methods and attenuate bias arising from model mis-specification.

Keywords: parametric, weighted average, R.

1. Introduction

Practitioners frequently wrestle with issues surrounding model uncertainty, and model selec-
tion is perhaps one of the most widely used solutions to this problem. Model selection deals
with model uncertainty by selecting one model from among a set of candidate models based on
a selection criterion. Model selection has a long history, and a variety of methods have been
proposed, each based on distinct estimation criteria. These include Akaike’s An Information
Criterion (AIC; Akaike (1970), Akaike (1973)), Mallows’ C), (Mallows (1973)), the Bayesian
Information Criterion (BIC; Schwarz (1978)), delete-one cross-validation (Stone (1974)), gen-
eralized cross-validation (Craven and Wahba (1979)), and the Focused Information Criterion
(FIC) (Claeskens and Hjort (2003)), to name but a few.

Model averaging deals with model uncertainty not by having the user select one model from
among a set of candidate models according to a criterion such as C,, AIC or BIC, but
instead by averaging over the set of candidate models in a particular manner. The goal is to
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reduce estimation variance while controlling mis-specification bias. There is a longstanding
literature on Bayesian model averaging; see Hoeting, Madigan, Raftery, and Volinsky (1999)
for a comprehensive review. There is also a rapidly-growing literature on frequentist methods
for model averaging, including Buckland, Burnhamn, and Augustin (1997), Hansen (2007),
Wan, Zhang, and Zou (2010), and Hansen and Racine (2012), among others.

The R package ma aims to automate the process of model averaging thereby freeing the
practitioner from tedious details. The ma package adopts a frequentist approach; for those
interested in a Bayesian approach see the R package BMA. It is assumed that the practitioner
is using regression techniques and is concerned about the impact of model mis-specification
on inference and prediction. As far as possible, the interface is designed to mimic that for
1m() with some notable exceptions outlined below.

2. Implementation of the Model Average Procedure

Consider a nonparametric regression model containing both categorical and continuous pre-
dictors where one is interested in modeling the unknown conditional mean in the following
location-scale model,

Y=9(X,Z)+0(X,Z)e, (1)

where g(x,2) = E[Y|X = x,Z = z] is an unknown function, X =(X,...,X,)" is a ¢-
dimensional vector of continuous predictors, and Z = (Zy, .. ., ZT)T is an r-dimensional vector
of categorical predictors. Letting z = (z,)._;, we assume that z; takes ¢y different values in
Dy ={0,1,...,¢cs— 1}, s=1,...,r, and let ¢4 be a finite positive constant.

2.1. Categorical Predictors and Candidate Model Selection

To handle the presence of categorical predictors, we might estimate g(-) by tensor-product
polynomial splines weighted by categorical kernel functions as proposed by Ma, Racine, and
Yang (2015). Let B (x) be the tensor-product polynomial splines and L (Z, z, ) be a product
categorical kernel function. Then the nonparametric function g (x,z) can be approximated
by B (x)T 8 (z), where 8 (z) is a K,, x 1 vector with K,, — 0o as n — co. We estimate 3 (z)
by minimizing the following weighted least squares criterion,

-~

_ N Y - B(X) 8\ L(Z:. 2\ 2
B(Z)—afgﬁrerggnil{ i —B(X)" B} L(ZizN). @

Thus ¢ (x,z) is estimated by g (x,z) = B(X)Tg(z). If B(x) = x (i.e., the identity basis)
the we are conducting standard linear (in predictors) weighted least squares estimation (i.e.,
g(x,z) = xT3 (z)). If in addition we introduced the categorical predictors as additive factors
instead of using kernel weighting, we are conducting standard linear least squares with additive
dummy variables (i.e., §(x,2z) =z a + XTB); see the related work of Ma and Racine (2013).
Each of these possibilities can be entertained among the set of candidate models implemented

in the ma package.

2.2. Candidate Model Basis Function Choice
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Note that B (x) need not necessarily be a tensor product (i.e., a nonparametric basis per Ma
et al. (2015)). It could be additive (i.e, a semiparametric basis per Ma and Racine (2013))
or a perhaps a modified Taylor-type basis that admits differing orders in each dimension.
Regardless of the nature of the basis, each candidate model used in the model average will
differ in terms of its polynomial degree in each dimension, number of interior knots, and
smoothing parameters for the kernel weighting function.

Denote the mth such model as g, (x,z). Having fitted the M candidate models over which
the averaging is to take place, we will require a model averaging criterion; the ma package
allows for two such criteria which we briefly outline below.

2.3. Hansen’s (2007) Mallows Model Average Criterion

The Mallows (Mallows 1973) criterion for the model average estimator (Hansen 2007) is

Cr(w) = W' EEw + 202 K'w,

where E is the T x M matrix with columns containing the residual vector from the mth
candidate estimating equation, K the M x 1 vector whose elements are the number of pa-
rameters (i.e., rank) in each model, and o2 the variance from the largest dimensional model.
This criterion is used to select the weight vector w, i.e.,

w = argmin,, Cy, (w).

Because argmin,, Cy,(w) has no closed-form solution, the weight vector is found numerically.
The solution involves constrained minimization subject to non-negativity and summation con-
straints, which constitutes a classic quadratic programming problem. This criterion involves
nothing more than computing the residuals for each candidate estimating equation, obtaining
the rank of each candidate estimating equation, and solving a simple quadratic program. The
Mallows model averaging (MMA) criterion C),(w) provides an estimate of the average squared
error from the model average fit, and has been shown to be asymptotically optimal in the
sense of achieving the lowest possible squared error in a class of model average estimators.
See Hansen (2007) for further details.

2.4. Hansen and Racine’s (2012) Jackknife Model Average Criterion

Hansen and Racine (2012) propose an alternative jackknife model averaging (JMA) criterion
for the model average estimator given by

where Y is the T'x M matrix with columns containing the jackknife fitted value vector from the
mth candidate estimating equation formed by deleting the ¢th observation when constructing
the tth prediction. Like its Mallows counterpart, this involves solving a quadratic program
where we minimize (y—Yw) (y—Yw) = y'y+w'Y' Yw—2y Yw and the first term is ignorable
as it does not involve the weight vector w. In the presence of homoskedastic errors, JMA and
MMA are nearly equivalent, but when the errors are heteroskedastic, JMA delivers models
with significantly lower MSE.
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Whether using JMA or MMA, both involve solving a simple quadratic program (the R package
quadprog is invoked for its solution).

3. R Function Interface and Defaults

The main function is called 1m.ma (). Models are specified symbolically. A typical model has
the form response ~ terms where response is the (numeric) response vector and terms is a
series of terms which specifies a linear predictor for response. Note that, unlike 1m() in which
the formula interface specifies functional form, in 1m.ma() the formula interface is strictly for
listing the variables involved and the procedure will determine an appropriate model averaged
functional form. Do not incorporate transformations, interactions and the like in the formula
interface for lm.ma as these will most surely fail.

The function 1lm.ma () computes a model that is the weighted average of a set of least squares
candidate models whose predictors are generated by common basis functions (additive, mod-
ified Taylor polynomial, or tensor products). The candidate models increase in complexity
from linear bases (if degree.min=1) through higher order ones up to degree.max. All bases
are of the Bernstein polynomial class, as opposed to raw polynomials, and allow for differing
degrees across multivariate predictors regardless of the basis invoked. When knots=TRUE,
interior quantile knots are used and the Bernstein polynomials become B-spline bases and
we are then averaging over regression spline models (i.e., knots are placed at equi-probable
quantiles for each predictor, so one interior knot would be placed at the median value of each
predictor, three at the first, second, and third quartiles etc.). When the number of numeric
predictors is two or more, the modified Taylor polynomial includes interaction terms (i.e.,
cross-partial derivatives) up to order degree minus one. Since we are averaging over models
that are nonlinear in the predictors, derivatives will be vectors that potentially depend on the
values of every predictor. An ad-hoc formula is used to determine the relationship between the
largest (i.e., most complex) model, the sample size, and the number of predictors. This ad-
hoc rule was set so that, as the sample size increases, we can approximate ever more complex
functions while necessarily restricting the size of the largest model in small sample settings.
Categorical predictors can enter additively and linearly (if ve=FALSE) or in a parsimonious
manner by exploiting recent developments in semiparametric varying coefficient models along
the lines of Ouyang, Li, and Racine (2013). With the options knots=TRUE and vc=TRUE, we
are averaging over varying-coeflicient regression splines.

The heuristic used for degree.max, the maximum value for the basis degree in each dimen-
sion, defaults to max(2,ceiling(log(n)-2*log(1+k))) where k is the number of numeric
predictors and n the number of observations.

The heuristic used for lambda.num.max, the maximum value for the smoothing parameter
grid in each dimension, defaults to max(2,ceiling(log(n)-2*1log(1+p))) where p is the
number of categorical predictors and n the number of observations.

When there exist more than two predictors, the spline degree increases by 2 by default (this
can be controlled by the option degree.by) so we would estimate polynomials of degree 1,3,5,
etc. The option all.combinations=FALSE can be invoked in multivariate settings to control
the number of candidate models (this option has the effect of using the same degree for each
predictor in each candidate model rather than considering all possible combinations).
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3.1. Generic Accessor Functions

The function summary is used to obtain and print a summary of the results. The generic
accessor functions coef, fitted, predict, plot (see ?plot.1lm for details) and residuals
extract various useful features of the value returned by Im.ma.

3.2. Plotting Im.ma Objects.

The function plot.lm.ma() plots an 1m.ma object. It can plot either the conditional mean
(default) or partial derivatives of the conditional mean with respect to the predictors, whether
of type numeric or factor. Nonparametric confidence intervals can be plotted via the option
plot.ci=TRUE, while data (and a rug) can be included when plot.data=TRUE (plot.rug=TRUE).

4. Simulated Univariate Illustration

By way of illustration, consider the following chunk of R code. We simulate data from a
nonlinear data generating process (DGP). The practitioner might consider, say, linear regres-
sion via 1m(y~x) but this model would clearly be mis-specified as might other models they
consider. Instead, consider the model produced by 1m.ma(y~x). The fitted model and data
are plotted in Figure 1.

R> library(ma)

R> set.seed(42)

R> n <- 1000

R> x <- runif(n)

R> dgp <- sin(4*pi*x)

R> y <- dgp + rnorm(n,sd=0.25*sd(dgp))
R> model <- lm.ma(y~x,verbose=FALSE)

Figure 1 reveals that the model average estimator is more faithful to the underlying DGP
than the naive linear regression model. Of course no serious practitioner would likely have
settled for the naive linear model, but that is besides the point. The point to be made is
that the model average approach is known to possess a number of appealing characteristics
and by automating the choice of the candidate models we can provide an interface for model
averaging that may be of use for practitioners.

4.1. Illustrative Application

Next we consider an application based on the Demographic and Health Survey data on child-
hood nutrition in India (Koenker 2011). This dataset involves 37,623 observations and we
consider three numeric predictors and three categorical predictors. The dependent variable
is the child’s height (centimeters) and we consider predictors child’s age (months), mother’s
BMI (kilograms per meter squared), mother’s years of education, child’s sex, whether or not
child is a twin, and birth order of the child. We consider an additive basis with additive dum-
mies for the candidate models. Results for the conditional mean are presented in partial plots
(i.e., the off-axis predictors are held constant at their respective medians/modes) in Figure
2. We also present the marginal effects (i.e., derivatives) in Figure 3. The model summary
appears in Table 1.



6 ma: Model Averaging

0 _
— —— Model Average
_ - - - Im(y~x)
o _{
o
> —
ol
o -
|
L
T I I I I I
0.0 0.2 0.4 0.6 0.8 1.0
X
Figure 1: Simulated illustration, n = 1000 observations, model average estimate, lin-

ear (in predictor) estimate, and data generating process (DGP) (figure created via
plot (model,plot.data=TRUE) ).

Figures 2 and 3 would accord with one’s expectations. There are clear nonlinearities at work
with regards to the child’s age that go beyond simple low order polynomials, while it is
interesting to consider the marginal effect associated with, e.g., whether one has a twin and
birth order.

5. ANOVA-Based Inference

An ANOVA-based test of significance is considered. The standard asymptotics are not ap-
plicable in this setting (though they are available to the user). Instead a nonparametric
bootstrap procedure is implemented.

The bootstrap procedure is straightforward.
e Fit the model average model for all predictors (call this the unrestricted model).

e Fit the model average model for all predictors except the one whose significance is being
tested (call this the restricted model).

e Compute the usual F-statistic from these two models. Call this statistic F'.

e Use a residual-based bootstrap procedure based on the residuals from the restricted
model, then bootstrap the F-statistic following the same steps as above. Call these
Fy, F5, ... Fg.

e Compute the nonparametric P-value in the usual manner (i.e., P = B~ Zle 1(Fy >
F)).
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Figure 2: India childhood nutrition derivative estimate.
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Table 1: Model Summary For Childhood Nutrition Model.

R> summary (model)

Call:

1m.ma.formula(formula = cheight ~ cage + mbmi + medu + faccsex +
facctwin + faccbirthorder, basis = "additive", vc = FALSE,
verbose = FALSE)

Model Averaging Linear Regression (Additive Dummy Specification)
Model average criterion: Jackknife (Hansen and Racine (2013))
Minimum degree: O

Maximum degree: 10

Basis: additive

Number of observations: 37623

Number of numeric predictors: 3

Number of categorical predictors: 3

Equivalent number of parameters: 25.66

Residual standard error: 5.163 on 37597.34 degrees of freedom
Multiple R-squared: 0.8429

Estimation time: 54.6 seconds

Number of candidate models: 216
Non-zero model average weights: 0.0004 0.0036 0.0031 0.0021 0.0516 0.0729 0.1272 0.0058 0.1008
Non-zero weight model ranks: 13.0 15.0 21.0 21.0 22.0 22.0 24.0 24.0 24.0 26.0 28.0

e Reject Hy if P < « where « is the nominal level of the test.

A simulated example is presented in Table 2.

Extensive simulations reveal that the test is correctly sized and displays power that increases
with the departure from the null and the sample size.

6. Parallel Computation

Parallel processing can be enabled by invoking the option parallel=TRUE. This can reduce
computation by up to 1/parallel.cores, particularly for multiple predictor models where
computation of each candidate model may be non-trivial. Note that the default number of
cores invoked is the number of cores present in the CPU on which the code is executed.
Note also that, when parallel=TRUE, this applies to all computation except for solving the
quadratic program which invokes a call to solve.QP from the R package quadprog that, at
this time, does not support parallel processing.

7. Limitations and Caveats

The model average approach implemented in the ma package is capable of statistically con-
sistent estimation of certain classes of smooth functions (e.g., analytic) at rates approaching
or equal to those of correctly specified parametric models (extensive simulations highlighting
this feature are available upon request). In this sense the approach is competitive with and
even more efficient than some popular nonparametric approaches such as locally weighted

0.2854 0.3471
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Table 2: Simulated ANOVA Test of Significance.

R> model <- lm.ma(y’x,

R+ compute.anova=TRUE,

R+ compute.anova.boot=TRUE,
R+ degree.min=1,

R+ verbose=FALSE)

R> summary (model)

Call:

Im.ma.formula(formula = y ~ x, compute.anova = TRUE, compute.anova.boot = TRUE,

degree.min = 1, verbose = FALSE)

Model Averaging Linear Regression (Varying Coefficient Specification)
Model average criterion: Jackknife (Hansen and Racine (2013))
Minimum degree: 1

Maximum degree: 14

Basis: additive

Number of observations: 1000

Number of numeric predictors: 1

Equivalent number of parameters: 12.12

Residual standard error: 0.1768 on 987.88 degrees of freedom
Multiple R-squared: 0.9413

Estimation time: 3.5 seconds

Number of candidate models: 14
Non-zero model average weights: 0.0005 0.0006 0.0442 0.2169 0.7378
Non-zero weight model ranks: 2.0 6.0 8.0 10.0 13.0

Nonparametric significance test
P Value:
x < 2.22e-16 *** [F = 1425.059]

Signif. codes: O "xx*x' 0.001 'sx' 0.01 '*' 0.05 '.' 0.1 "' ' 1



Journal of Statistical Software

kernel estimation. This is achieved automatically and without input by the user. This stands
in contrast to the model average approaches embodied in the R packages listed previously
that rely on a set of candidate models provided by the user that may not be endowed with
this feature unless the user also ties the dimensions of their candidate models to the available
sample information, among other important aspects (such as including interactions among
predictors and allowing for a sufficiently high polynomial order in the candidate models to
capture a sufficiently rich set of nonlinearities).

It should come as no surprise that this approach, like its nonparametreic peers, will face
the curse of dimensionality. To partially address this shortcoming, in order for our model
average approach to deliver statistically consistent estimation of broad classes of functions, the
complexity of the maximal basis function in the set of candidate models to be averaged over
must increase with the amount of sample information present, among other important aspects.
However, for a finite sample size, the maximum dimension of the basis is constrained by this
limit. Some heuristics already mentioned seek to trade off consistency versus computational
feasibility given the data at hand. Of course, default settings appropriate for one DGP may
be inappropriate for another, so some sensitivity analysis may be called for to ensure that the
final results are not upset by modifying the default configuration.

When using the default settings in high dimensional situations, the number of candidate mod-
els may grow unreasonably large (say 2,500 or more). Furthermore, the dimension of the max-
imal basis may similarly grow unreasonably large (say 5,000 or more). In such cases you might
want to 1) increase 8, ii) increase lambda. S (if categorical predictors are present and ve=TRUE),
iii) set and restrict degree.max, iv) set and restrict lambda.num.max if categorical predictors
are present, v) reduce segments.max (if knots=TRUE), vi) set all.combinations=FALSE, or
perhaps instead consider a semiparametric model (basis="additive" and vc=FALSE produces
semiparametric additive candidate models - see the example in ?india for an illustration).

It is therefore helpful to remember that the goal of model averaging is to outperform model
assertion or model selection by reducing estimation variance while controlling mis-specification
bias. The goal is not to obtain statistically consistent estimators - that remains the domain
of fully nonparametric estimation. As Box (1979) famously remarked in a section titled “All
models are wrong, but some are useful”,

Now it would be very remarkable if any system existing in the real world could be
exactly represented by any simple model. However, cunningly chosen parsimonious
models often do provide remarkably useful approximations. For example, the law
PV = RT relating pressure P, volume V and temperature 7' of an “ideal” gas
via a constant R is not exactly true for any real gas, but it frequently provides a
useful approximation and furthermore its structure is informative since it springs
from a physical view of the behavior of gas molecules.

For such a model there is no need to ask the question “Is the model true?”. If
“truth” is to be the “whole truth” the answer must be “No”. The only question of
interest is “Is the model illuminating and useful?”.

We might rephrase this as “Any single model is wrong but potentially useful. However, a
model which is itself an average of a set of models is potentially even more illuminating and
useful still.”

11
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