
Package ‘ma’

June 6, 2017

Type Package

Title Model Averaging

Version 1.0-8

Date 2017-06-06

Imports doParallel, foreach, parallel, quadprog

Suggests crs, np, rgl, knitr, rmarkdown

VignetteBuilder knitr

Depends R (>= 2.10)

Author Jeffrey S. Racine [aut, cre]

Maintainer Jeffrey S. Racine <racinej@mcmaster.ca>

Description Model averaging using a variety of multivariate bases and averaging criteria.

License GPL-2

URL https://github.com/JeffreyRacine/R-Package-ma

BugReports https://github.com/JeffreyRacine/R-Package-ma/issues

NeedsCompilation yes

Archs x86_64

R topics documented:

ma-package . 2

cps71 . 3

india . 4

lm.ma . 5

oecdpanel . 17

plot.lm.ma . 18

wage1 . 20

Index 22

1

https://github.com/JeffreyRacine/R-Package-ma
https://github.com/JeffreyRacine/R-Package-ma/issues

2 ma-package

ma-package Model Averaging

Description

Model averaging using a variety of multivariate bases and averaging criteria.

Details

The DESCRIPTION file:

Package: ma

Type: Package

Title: Model Averaging

Version: 1.0-8

Date: 2017-06-06

Imports: doParallel, foreach, parallel, quadprog

Suggests: crs, np, rgl, knitr, rmarkdown

VignetteBuilder: knitr

Depends: R (>= 2.10)

Authors@R: person(given = "Jeffrey S.", family = "Racine", role = c("aut","cre"), email = "racinej@mcmaster.ca")

Author: Jeffrey S. Racine [aut, cre]

Maintainer: Jeffrey S. Racine <racinej@mcmaster.ca>

Description: Model averaging using a variety of multivariate bases and averaging criteria.

License: GPL-2

URL: https://github.com/JeffreyRacine/R-Package-ma

BugReports: https://github.com/JeffreyRacine/R-Package-ma/issues

Index of help topics:

cps71 Canadian High School Graduate Earnings

india Childhood Malnutrition in India

lm.ma Fitting Model Average Models

ma-package Model Averaging

oecdpanel Cross Country Growth Panel

plot.lm.ma Plot an 'lm.ma' Object

wage1 Cross-Sectional Data on Wages

Author(s)

Jeffrey S. Racine [aut, cre]

Maintainer: Jeffrey S. Racine <racinej@mcmaster.ca>

cps71 3

cps71 Canadian High School Graduate Earnings

Description

Canadian cross-section wage data consisting of a random sample taken from the 1971 Canadian

Census Public Use Tapes for male individuals having common education (grade 13). There are 205

observations in total.

Usage

data("cps71")

Format

A data frame with 2 columns, and 205 rows.

logwage the first column, of type numeric

age the second column, of type integer

Source

Aman Ullah

References

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Examples

Not run:

data(cps71)

model <- lm.ma(logwage~age,compute.anova=TRUE,data=cps71)

summary(model)

plot(model,plot.data=TRUE,plot.ci=TRUE,plot.B=999)

End(Not run)

4 india

india Childhood Malnutrition in India

Description

Demographic and Health Survey data on childhood nutrition in India.

Usage

data(india)

Format

A data frame with 37623 observations on the following 21 variables.

cheight child’s height (centimeters); a numeric vector

cage child’s age (months); a numeric vector

breastfeeding duration of breastfeeding (months); a numeric vector

csex child’s sex; a factor with levels male female

ctwin whether or not child is a twin; a factor with levels single birth twin

cbirthorder birth order of the child; a factor with levels 1 2 3 4 5

mbmi mother’s BMI (kilograms per meter squared); a numeric vector

mage mother’s age (years); a numeric vector

medu mother’s years of education; a numeric vector

edupartner father’s years of education; a numeric vector

munemployed mother’s employment status; a factor variable with levels unemployed employed

mreligion mother’s religion; a factor variable with levels christian hindu muslim other sikh

mresidence mother’s residential classification; a factor with levels urban rural

wealth mother’s relative wealth; a factor with levels poorest poorer middle richer richest

electricity electricity access; a factor with levels no yes

radio radio ownership; a factor with levels no yes

television television ownership; a factor with levels no yes

refrigerator refrigerator ownership; a factor with levels no yes

bicycle bicycle ownership; a factor with levels no yes

motorcycle motorcycle ownership; a factor with levels no yes

car car ownership; a factor with levels no yes

Source

http://www.econ.uiuc.edu/~roger/research/bandaids/india.Rda

lm.ma 5

References

Koenker, R. (2011), "Additive models for quantile regression: Model selection and confidence

bandaids," Brazilian Journal of Probability and Statistics 25(3), pp. 239-262.

Examples

Not run:

data(india)

attach(india)

faccsex <- factor(csex)

facctwin <- factor(ctwin)

faccbirthorder <- factor(cbirthorder)

facmunemployed <- factor(munemployed)

facmreligion <- factor(mreligion)

faccar <- factor(car)

Estimate a semiparametric additive model averaged model

model <- lm.ma(cheight ~ faccsex + facctwin + faccbirthorder +

facmunemployed + facmreligion + faccar + cage +

mbmi + medu,

basis="additive",

vc=FALSE)

summary(model)

plot(model,plot.data=TRUE)

plot(model,plot.deriv=TRUE)

End(Not run)

lm.ma Fitting Model Average Models

Description

A function with an interface similar to lm that averages over a set of linear (in parameters) candidate

models.

Usage

lm.ma(...)

Default S3 method:

lm.ma(y = NULL,

X = NULL,

X.eval = NULL,

all.combinations = TRUE,

6 lm.ma

alpha = 0.05,

auto.basis = c("tensor","taylor","additive"),

auto.reduce = TRUE,

B = 99,

basis.vec = NULL,

basis = c("auto","tensor","taylor","additive"),

boot.ci = FALSE,

compute.anova = FALSE,

compute.anova.boot = FALSE,

compute.anova.index = NULL,

compute.deriv = FALSE,

compute.mean = TRUE,

degree.by = 2,

degree.max = NULL,

degree.min = 0,

deriv.index = NULL,

deriv.order = 1,

DKL.mat = NULL,

eps.lambda = 1e-04,

knots = FALSE,

lambda.S = 2,

lambda.max = 1,

lambda.num.max = NULL,

ma.weights = NULL,

ma.weights.cutoff = 1e-04,

max.dim.candidate.models = 5000,

max.num.candidate.models = 2500,

method = c("jma","mma"),

parallel = FALSE,

parallel.cores = NULL,

rank.vec = NULL,

restrict.sum.ma.weights = TRUE,

rng.seed = 42,

S = 1,

segments.by = 2,

segments.max = 3,

segments.min = 1,

singular.ok = TRUE,

trace = FALSE,

vc = TRUE,

verbose = TRUE,

weights = NULL,

...)

S3 method for class 'formula'

lm.ma(formula,

data = list(),

y = NULL,

lm.ma 7

X = NULL,

X.eval = NULL,

all.combinations = TRUE,

alpha = 0.05,

auto.basis = c("tensor","taylor","additive"),

auto.reduce = TRUE,

B = 99,

basis.vec = NULL,

basis = c("auto","tensor","taylor","additive"),

boot.ci = FALSE,

compute.anova = FALSE,

compute.anova.boot = FALSE,

compute.anova.index = NULL,

compute.deriv = FALSE,

compute.mean = TRUE,

degree.by = 2,

degree.max = NULL,

degree.min = 0,

deriv.index = NULL,

deriv.order = 1,

DKL.mat = NULL,

eps.lambda = 1e-04,

knots = FALSE,

lambda.S = 2,

lambda.max = 1,

lambda.num.max = NULL,

ma.weights = NULL,

ma.weights.cutoff = 1e-04,

max.dim.candidate.models = 5000,

max.num.candidate.models = 2500,

method = c("jma","mma"),

parallel = FALSE,

parallel.cores = NULL,

rank.vec = NULL,

restrict.sum.ma.weights = TRUE,

rng.seed = 42,

S = 1,

segments.by = 2,

segments.max = 3,

segments.min = 1,

singular.ok = TRUE,

trace = FALSE,

vc = TRUE,

verbose = TRUE,

weights = NULL,

...)

8 lm.ma

Arguments

formula a symbolic description of the model to be fit

data an optional data frame containing the variables in the model

y a one dimensional vector of dependent data

X a p-variate data frame of explanatory (training) data

X.eval a p-variate data frame of points on which the regression will be estimated (eval-

uation data)

all.combinations

a logical value indicating whether or not to attempt all combinations of degrees,

segments, knots, and lambda values (if all.combinations=FALSE only can-

didate models with the same degree in all dimensions are considered, no inte-

rior knots are considered, while the minimum number of segments and smallest

value for lambda are used)

alpha a value in (0,1) used to compute 1− α% confidence intervals

auto.basis which (subset possible) bases to use when basis="auto"

auto.reduce a logical value indicating whether or not to use some crude heuristics to reduce

the number of candidate models if the number of candidate models exceeds

max.num.candidate.models

B the number of bootstrap replications desired

basis.vec a vector (character) of bases for each candidate model

basis a character string indicating whether the generalized Taylor polynomial, additive

or tensor product basis should be used (if basis="auto" then for each candidate

model the most appropriate basis is determined via cross-validation)

boot.ci a logical value indicating whether or not to construct nonparametric bootstrap

confidence intervals

compute.anova a logical value indicating whether or not to conduct an anova-based procedure

to test for predictor significance

compute.anova.boot

a logical value indicating whether or not the test for predictor significance uses

asymptotic or bootstrapped P-values

compute.anova.index

an optional vector of indices indicating which predictor(s) are to be tested (de-

fault is all predictors)

compute.deriv a logical value indicating whether or not to compute derivatives

compute.mean a logical value indicating whether or not to compute the conditional mean

degree.by increment in degree sequence (if degree.min=0 sequence will include degree 0

then start at 1 in increments of degree.by)

degree.max the maximum value for the basis degree in each dimension (the value defaults

to max(2,ceiling(log(n)-S*log(1+k))) where k is the number of numeric

predictors and n the number of observations

degree.min the minimum value for the basis degree in each dimension

lm.ma 9

deriv.index an optional vector of indices indicating which predictor(s) derivative is com-

puted

deriv.order an integer indicating the order of derivative desired (1,2,...)

DKL.mat a matrix with degree, knots, and lambda values (if vc=TRUE) that could option-

ally be passed to the basis routines

eps.lambda a small positive constant for the start of the sequence of smoothing parameters

used in the weight function for the categorical predictors when vc=TRUE

knots a logical value indicating whether or not to include interior knots

lambda.S the constant in the data-driven rule for determining lambda.num.max

lambda.max largest value (<= 1) of the smoothing parameters used in the weight function for

the categorical predictors when vc=TRUE

lambda.num.max the maximum value for the smoothing parameter grid in each dimension (de-

faults to max(2,ceiling(log(n)-lambda.S*log(1+p))) where p is the num-

ber of categorical predictors and n the number of observations

ma.weights a vector of model average weights obtained from a previous invocation (useful

for bootstrapping etc.)

ma.weights.cutoff

a small number below which a model weight is deemed to be essentially zero

max.dim.candidate.models

an arbitrary upper bound on the maximum dimension of candidate models per-

mitted

max.num.candidate.models

an arbitrary upper bound on the maximum number of candidate models permit-

ted

method a character string indicating whether to use jackknife model averaging ("jma",

Hansen and Racine (2013)) or Mallows model averaging ("mma", Hansen (2007)

- both are frequentist model average criterion)

parallel a logical value indicating whether or not to run certain routines in parallel

parallel.cores a positive integer indicating the number of cores desired when parallel=TRUE

(when parallel=FALSE defaults to the number of available cores)

rank.vec a vector of ranks for each candidate model

restrict.sum.ma.weights

a logical value indicating whether or not to restrict the sum of the model av-

erage weights to one when solving the quadratic program (they are normalized

afterwards when restrict.sum.ma.weights=FALSE)

rng.seed an integer used to seed R’s random number generator - this is to ensure replica-

bility when bootstrapping

S the constant in the data-driven rule for determining degree.max

segments.by increment in segments sequence when knots=TRUE

segments.min the minimum number of segments when knots=TRUE (i.e., number of knots mi-

nus 1 - there always exist two knots, the endpoints) to allow for the B-spline

basis

10 lm.ma

segments.max the maximum number of segments when knots=TRUE (i.e., number of knots

minus 1 - there always exist two knots, the endpoints) to allow for the B-spline

basis

singular.ok if ‘FALSE’ (the default in S but not in R) a singular fit is an error

trace a logical value indicating whether or not to issue a detailed progress report via

warning

vc a logical value indicating whether to allow the categorical predictors to enter

additively (only the intercept can shift) or to instead use a varying coefficient

structure (all parameters can shift)

verbose a logical value indicating whether to report detailed progress during computation

(warnings() are not issued when verbose=FALSE)

weights an optional vector of weights to be used in the fitting process. Should be NULL

or a numeric vector; if non-NULL, weighted least squares is used with weights

weights (that is, minimizing
∑

i
wie

2

i
); otherwise ordinary least squares is used

... optional arguments to be passed

Details

Models for lm.ma are specified symbolically. A typical model has the form response ~ terms

where response is the (numeric) response vector and terms is a series of terms which specifies a

linear predictor for response. Typical usages are

model <- lm.ma(y~x1+x2)

model <- lm.ma(y~x1+x2,compute.deriv=TRUE)

model <- lm.ma(y~x1+x2,boot.ci=TRUE)

model <- lm.ma(y~x1+x2,compute.anova=TRUE,compute.anova.boot=TRUE,degree.min=1)

model <- lm.ma(y~x1+x2,parallel=TRUE)

model <- lm.ma(y~x1+x2,parallel=TRUE,parallel.cores=2)

model <- lm.ma(y~x+z,lambda.S=3)

model <- lm.ma(y~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,

vc=FALSE,

degree.by=1,

degree.max=5,

basis="additive",

all.combinations=FALSE)

plot(model)

plot(model,plot.data=TRUE)

plot(model,plot.ci=TRUE,plot.B=199)

plot(model,plot.data=TRUE,plot.ci=TRUE,plot.B=199)

plot(model,plot.deriv=TRUE)

plot(model,plot.deriv=TRUE,plot.ci=TRUE,plot.B=399)

summary(model)

fitted(model)

coef(model)

lm.ma 11

For generating predictions, create foo, a data frame with named

elements (important) for all predictors in the object model,

then call predict, e.g.,

foo <- data.frame(x1=c(1,2),x2=c(3,4))

predict(model,newdata=foo)

If you want to see the degrees, number of segments, and smoothing

parameters for the categorical predictors (vc=TRUE) selected by

the procedure for the models that receive positive model average

weights, try the following:

model$DKL.mat[model$ma.weights>model$ma.weights.cutoff,]

Note that, unlike lm in which the formula interface specifies functional form, in lm.ma the formula

interface is strictly for listing the variables involved and the procedure will determine an appropriate

model averaged functional form. Do not incorporate transformations, interactions and the like in

the formula interface for lm.ma as these will most surely fail.

This function computes a model that is the weighted average of a set of least squares candidate

models whose predictors are generated by common basis functions (additive, generalized Taylor

polynomial, or tensor products). The candidate models increase in complexity from linear bases (if

degree.min=1) through higher order ones up to degree.max. All bases are of the Bernstein poly-

nomial class, as opposed to raw polynomials, and allow for differing degrees across multivariate

predictors. When knots=TRUE, interior knots are used and the Bernstein polynomials become B-

spline bases and we are then averaging over regression spline models. When the number of numeric

predictors is two or more, the generalized Taylor polynomial includes interaction terms up to order

degree minus one. Since we are averaging over models that are nonlinear in the predictors, deriva-

tives will be vectors that potentially depend on the values of every predictor. An ad-hoc formula

is used to determine the relationship between the largest (most complex) model, the sample size,

and the number of predictors. This ad-hoc rule was set so that, as the sample size increases, we can

approximate ever more complex functions while necessarily restricting the size of the largest model

in small sample settings. Categorical predictors can enter additively and linearly (if vc=FALSE)

or in a parsimonious manner by exploiting recent developments in semiparametric varying coeffi-

cient models along the lines of Li, Ouyang, and Racine (2013). With the options knots=TRUE and

vc=TRUE, we are averaging over varying-coefficient regression splines.

This approach frees the user from using either model assertion or selection methods and thereby

attenuates bias arising from model misspecification. Simulations reveal that this approach is com-

petitive with some semi- and nonparametric approaches. Because it uses only least squares fits, it

can be more computationally efficient than its nonparametric counterparts.

Value

lm.ma returns an object of class "lm.ma".

The function summary is used to obtain and print a summary of the results. The generic accessor

functions coef, fitted, predict, plot (see ?plot.lm for details) and residuals extract various

useful features of the value returned by lm.ma.

An object of class "lm.ma" is a list containing at least the following components:

12 lm.ma

degree.max value of degree.max for each dimension (set by an ad-hoc rule unless manually

overridden)

deriv.ci.l α/2 nonparametric confidence value matrix for the matrix of derivatives

deriv.ci.u 1− α/2 nonparametric confidence value matrix for the matrix of derivatives

deriv.scale robust scale (mad) matrix for the matrix of derivatives

deriv matrix of derivative vectors for each predictor

fitted.ci.l α/2 nonparametric confidence value vector for the vector of fitted/predicted val-

ues

fitted.ci.u 1 − α/2 nonparametric confidence value vector for the vector fitted/predicted

values

fitted.scale robust scale (mad) vector for the vector of fitted/predicted values

fitted.values vector of fitted values

ma.weights model average weights

r.squared appropriate measure of goodness of fit (Doksum and Samarov (1995))

residuals model residuals

Note

This code is in beta status until further notice - proceed accordingly.

Note that the purpose of this package is to attenuate bias arising from model misspecification in

situations where model uncertainty is present and you are concerned about its impact on any sub-

sequent inference and prediction. This package is best suited to situations involving a manageable

number of predictors (i.e., a handful or two at most) and a sufficient number of observations so that

nonlinearities can reasonably be uncovered. If your objective is to include all possible measured

predictors (i.e., the kitchen sink approach) and conduct variable selection (i.e., attempt to determine

which variables enter linearly), this package is not for you; see instead the R packages BMA, lars,

or the function stepAIC in the MASS package (with degree.max=1 the defaults would only allow

for at most eleven numeric predictors, i.e., 211 combinations of degrees 0 and 1). To get around this

limitation that arises by attempting to consider a range of degree, segment, and smoothing parame-

ter values for each dimension (the number of combinations can quickly get far too large), the option

all.combinations=FALSE can be invoked. This restricts the number of candidate models by hold-

ing the degree, segment, and smoothing parameters to be the same for each dimension which can

reduce the number of models to just a handful at most. Using basis="additive" further restricts

the rank of each candidate model, while vc=FALSE can reduce execution time in the presence of

categorical predictors (see the example in Details above).

The number of candidate models may grow unreasonably large (say 2,500 or more) if multiple

predictors are present. Some heuristics are therefore necessary in order to corral the number of can-

didate models (and the maximum basis dimension). However, no default setting can be ideal for all

data generating processes and you may wish to intervene. If you wish to reduce the number of can-

didate models used, there are a number of ways of accomplishing this. In particular, you might want

to i) increase S, ii) increase lambda.S (if categorical predictors are present and vc=TRUE), iii) set

and restrict degree.max, iv) set and restrict lambda.num.max if categorical predictors are present,

v) reduce segments.max (if knots=TRUE), vi) set all.combinations=FALSE, vi) directly modify

max.dim.candidate.models and/or max.num.candidate.models, or perhaps instead consider a

lm.ma 13

semiparametric model (basis="additive" and vc=FALSE produces semiparametric additive can-

didate models - see the example in ?india for an illustration). When building the final model each

candidate model must be constructed and evaluated. However, after solving for the model average

weights, a number of candidate models may be assigned essentially zero weight. Subsequently,

only the non-zero weight models need be evaluated (e.g. when constructing derivative estimates,

predictions, confidence intervals and the like).

When compute.anova.boot=TRUE, the option compute.anova uses a bootstrap procedure that re-

quires re-computation of the model average model for each bootstrap replication. With one or

two predictors and compute.anova.boot=TRUE the procedure may be fairly fast, but as the model

complexity increases the procedure will require some patience.

The option compute.anova=TRUE cannot be used in the presence of one or more factors and exactly

one numeric predictor since there is no numeric predictor present when testing for significance for

the one numeric predictor.

Note that the option compute.anova=TRUE (not default) will warn immediately when degree.min=0

(default) and rest to degree.min=1. The reason for this is because irrelevant predictors can be au-

tomatically removed without the need for pre-testing if the procedure selects the degree for any

predictor to be 0 - in such cases the restricted and unrestricted models may coincide and the test

is degenerate. The same holds for smoothing parameter values with vc=TRUE in the presence of

categorical predictors (when lambda=1 irrelevant categorical predictors are automatically removed

without the need for pretesting, so we need to rule this case out when conducting hypothesis tests).

Averaging over models with ill-conditioned bases is not advised. Pay attention to the warning

“Dimension basis is ill-conditioned - reduce degree.max” should it arise and reduce degree.max

until this no longer is the case.

If you wish to plot the object with the option plot.ci=TRUE, it is not necessary to use the option

boot.ci=TRUE in the call to lm.ma() (this will simply add to overhead)

Note that predict.ma produces a vector of predictions or a list of predictions, confidence bounds,

derivative matrices and their confidence bounds.

See the examples contained in demo(package="ma") for illustrative demonstrations with real and

simulated data (e.g., demo(cps71,package="ma")).

Author(s)

Jeffrey S. Racine

References

Doksum, K. and A. Samarov (1995), “Nonparametric Estimation of Global Functionals and a Mea-

sure of the Explanatory Power of Covariates in Regression,” The Annals of Statistics, 23 1443-1473.

Li, Q. and D. Ouyang and J.S. Racine (2013), “Categorical Semiparametric Varying Coefficient

Models,” Journal of Applied Econometrics, Volume 28, 551-579.

Hansen, B. E. (2007), “Least Squares Model Averaging,” Econometrica 75, 1175-1189.

Hansen, B. E. & Racine, J. S. (2012), “Jackknife Model Averaging,” Journal of Econometrics

167(1), 38-46.

Racine, J.S. and D. Zhang and Q. Li (2017), “Model Averaged Categorical Regression Splines.”

14 lm.ma

See Also

lm, crs, npreg

Examples

options(warn=-1)

Example 1 - simulated nonlinear one-predictor function

set.seed(42)

n <- 100

x <- sort(runif(n))

dgp <- cos(2*pi*x)

y <- dgp + rnorm(n,sd=0.5*sd(dgp))

model.ma <- lm.ma(y~x)

summary(model.ma)

Note that the following calls to plot() use the option

plot.ci=TRUE which then invokes a bootstrap procedure. The

plots may take a few seconds to appear due to this additional

computation (if you remove this option the plots will appear

sooner).

par(mfrow=c(1,2))

plot(model.ma,plot.data=TRUE,plot.ci=TRUE)

plot(model.ma,plot.data=TRUE,plot.ci=TRUE,plot.deriv=TRUE)

par(mfrow=c(1,1))

Example 2 - five predictor (two categorical) earnings function

data(wage1)

attach(wage1)

Classical linear regression model (linear, additive, no interactions)

model.lm <- lm(lwage ~ female + married + educ + exper + tenure)

Murphy-Welch's favourite specification

model.lm.mw <- lm(lwage ~ female + married + educ + exper + I(exper^2)

+ I(exper^3) + I(exper^4) + tenure)

Murphy-Welch's favourite specification with interactions in the intercepts

model.lm.mwint <- lm(lwage ~ female + married + female:married + educ + exper

+ I(exper^2) + I(exper^3) + I(exper^4) + tenure)

summary(model.lm)

Compare with a semiparametric additive model average estimator

(female and married are factors)

model.ma <- lm.ma(lwage ~ female + married + educ + exper + tenure,

compute.deriv = TRUE,

lm.ma 15

basis = "additive",

degree.by = 1,

vc = FALSE)

summary(model.ma)

Compare coefficients from the simple linear model with the (vector summary) values

from model averaging for the non-factor predictors

apply(coef(model.ma),2,summary)

coef(model.lm)[4:6]

Compute parametric and model averaged marriage premiums for males and females

at median values of remaining predictors

newdata.female.married <- data.frame(educ=round(median(educ)),

exper=round(median(exper)),

tenure=round(median(tenure)),

female=factor("Female",levels=levels(female)),

married=factor("Married",levels=levels(married)))

newdata.female.notmarried <- data.frame(educ=round(median(educ)),

exper=round(median(exper)),

tenure=round(median(tenure)),

female=factor("Female",levels=levels(female)),

married=factor("Notmarried",levels=levels(married)))

Compute the so-called marriage premium - try three simple parametric

specifications (take your pick - is the premium +13%? +3%? -12%?)

Linear parametric

predict(model.lm,newdata=newdata.female.married)-

predict(model.lm,newdata=newdata.female.notmarried)

Murphy-Welch parametric

predict(model.lm.mw,newdata=newdata.female.married)-

predict(model.lm.mw,newdata=newdata.female.notmarried)

Murphy-Welch parametric augmented with a dummy interaction

predict(model.lm.mwint,newdata=newdata.female.married)-

predict(model.lm.mwint,newdata=newdata.female.notmarried)

Model average

predict(model.ma,newdata=newdata.female.married)$fit-

predict(model.ma,newdata=newdata.female.notmarried)$fit

detach(wage1)

Example 3 - Canadian Current Population Survey earnings data

We compute two nonparametric estimators to compare with the

model averaging approach.

16 lm.ma

suppressPackageStartupMessages(require(np))

suppressPackageStartupMessages(require(crs))

data(cps71)

attach(cps71)

model.ma <- lm.ma(logwage~age)

plot(model.ma,plot.data=TRUE)

model.kernel <- npreg(logwage~age,regtype="ll",bwmethod="cv.aic")

lines(age,fitted(model.kernel),col=4,lty=4,lwd=2)

model.spline <- crs(logwage~age,cv.threshold=0)

lines(age,fitted(model.spline),col=3,lty=3,lwd=2)

legend("topleft",c("Model Average",

"Nonparametric Kernel",

"Nonparametric B-Spline"),

col=c(1,4,3),

lty=c(1,4,3),

lwd=c(1,2,2),

bty="n")

summary(model.spline)

summary(model.kernel)

summary(model.ma)

detach(cps71)

Example 5 - simulated multiplicative nonlinear two-predictor function

suppressPackageStartupMessages(require(rgl))

set.seed(42)

n <- 1000

x1 <- runif(n)

x2 <- runif(n)

dgp <- cos(2*pi*x1)*sin(2*pi*x2)

y <- dgp + rnorm(n,sd=0.5*sd(dgp))

n.eval <- 25

x.seq <- seq(0,1,length=n.eval)

newdata <- data.frame(expand.grid(x.seq,x.seq))

names(newdata) <- c("x1","x2")

model.ma <- lm.ma(y~x1+x2)

summary(model.ma)

Use the rgl package to render a 3D object (RGL is a 3D real-time rendering

system for R that supports OpenGL, among other formats).

z <- matrix(predict(model.ma,newdata=newdata),n.eval,n.eval)

num.colors <- 1000

colorlut <- topo.colors(num.colors)

col <- colorlut[(num.colors-1)*(z-min(z))/(max(z)-min(z)) + 1]

oecdpanel 17

par(ask=TRUE)

readline(prompt = "Hit <Return> to see next plot:")

open3d()

par3d(windowRect=c(900,100,900+640,100+640))

rgl.viewpoint(theta = 0, phi = -70, fov = 80)

persp3d(x.seq,x.seq,z=z,

xlab="X1",ylab="X2",zlab="Y",

ticktype="detailed",

border="red",

color=col,

alpha=.7,

back="lines",

main="Conditional Mean")

grid3d(c("x", "y+", "z"))

Note - if you click on the rgl window you can rotate the estimate

by dragging the object, zoom in and out etc.

oecdpanel Cross Country Growth Panel

Description

Cross country GDP growth panel covering the period 1960-1995 used by Liu and Stengos (2000)

and Maasoumi, Racine, and Stengos (2007). There are 616 observations in total.

Usage

data("oecdpanel")

Format

A data frame with 7 columns, and 616 rows. This panel covers 7 5-year periods: 1960-1964, 1965-

1969, 1970-1974, 1975-1979, 1980-1984, 1985-1989 and 1990-1994.

A separate local-linear rbandwidth object (‘bw’) has been computed for the user’s convenience

which can be used to visualize this dataset using plot(bw).

growth the first column, of type numeric: growth rate of real GDP per capita for each 5-year

period

oecd the second column, of type factor: equal to 1 for OECD members, 0 otherwise

year the third column, of type integer

initgdp the fourth column, of type numeric: per capita real GDP at the beginning of each 5-year

period

popgro the fifth column, of type numeric: average annual population growth rate for each 5-year

period

inv the sixth column, of type numeric: average investment/GDP ratio for each 5-year period

humancap the seventh column, of type numeric: average secondary school enrolment rate for

each 5-year period

18 plot.lm.ma

Source

Thanasis Stengos

References

Liu, Z. and T. Stengos (1999), “Non-linearities in cross country growth regressions: a semipara-

metric approach,” Journal of Applied Econometrics, 14, 527-538.

Maasoumi, E. and J.S. Racine and T. Stengos (2007), “Growth and convergence: a profile of distri-

bution dynamics and mobility,” Journal of Econometrics, 136, 483-508

Examples

Not run:

data(oecdpanel)

attach(oecdpanel)

oecd <- factor(oecd)

year <- ordered(year)

model.ma <- lm.ma(growth ~ oecd + year + initgdp + popgro + inv + humancap)

summary(model.ma)

plot(model.ma,plot.data=TRUE,plot.rug=TRUE)

End(Not run)

plot.lm.ma Plot an lm.ma Object

Description

Plots a model average model and its derivatives.

Usage

S3 method for class 'lm.ma'

plot(x,

plot.B = 99,

plot.ci = FALSE,

plot.data = FALSE,

plot.deriv = FALSE,

plot.num.eval = 250,

plot.rug = FALSE,

plot.xtrim = 0.005,

...)

plot.lm.ma 19

Arguments

x an object of type lm.ma

plot.B number of bootstrap replications used to construct nonparametric confidence

intervals

plot.ci a logical value indicating whether to plot nonparametric confidence intervals or

not

plot.data a logical value indicating whether to plot the data or not

plot.deriv a logical value indicating whether to compute derivatives or not

plot.num.eval number of evaluation points

plot.rug a logical value indicating whether to plot the data with a rug or not

plot.xtrim trimming parameter used to exclude tail values for the predictors that can ob-

scure main features in the plot (trims the proportion plot.xtrim from each tail)

... optional arguments to be passed to plot

Details

This function plots an object returned by lm.ma. Typical usages are

plot(model)

plot(model,plot.data=TRUE)

plot(model,plot.ci=TRUE,plot.B=99)

plot(model,plot.data=TRUE,plot.ci=TRUE,plot.B=199)

plot(model,plot.deriv=TRUE)

plot(model,plot.deriv=TRUE,plot.ci=TRUE,plot.B=399)

Value

None.

Author(s)

Jeffrey S. Racine

References

Racine, J.S. and D. Zhang and Q. Li (2017), “Model Averaged Categorical Regression Splines.”

Examples

data(cps71)

model <- lm.ma(logwage~age,data=cps71)

plot(model,plot.data=TRUE,plot.ci=TRUE)

20 wage1

wage1 Cross-Sectional Data on Wages

Description

Cross-section wage data consisting of a random sample taken from the U.S. Current Population

Survey for the year 1976. There are 526 observations in total.

Usage

data("wage1")

Format

A data frame with 24 columns, and 526 rows.

wage column 1, of type numeric, average hourly earnings

educ column 2, of type numeric, years of education

exper column 3, of type numeric, years potential experience

tenure column 4, of type numeric, years with current employer

nonwhite column 5, of type factor, =“Nonwhite” if nonwhite, “White” otherwise

female column 6, of type factor, =“Female” if female, “Male” otherwise

married column 7, of type factor, =“Married” if Married, “Nonmarried” otherwise

numdep column 8, of type numeric, number of dependents

smsa column 9, of type numeric, =1 if live in SMSA

northcen column 10, of type numeric, =1 if live in north central U.S

south column 11, of type numeric, =1 if live in southern region

west column 12, of type numeric, =1 if live in western region

construc column 13, of type numeric, =1 if work in construc. indus.

ndurman column 14, of type numeric, =1 if in nondur. manuf. indus.

trcommpu column 15, of type numeric, =1 if in trans, commun, pub ut

trade column 16, of type numeric, =1 if in wholesale or retail

services column 17, of type numeric, =1 if in services indus.

profserv column 18, of type numeric, =1 if in prof. serv. indus.

profocc column 19, of type numeric, =1 if in profess. occupation

clerocc column 20, of type numeric, =1 if in clerical occupation

servocc column 21, of type numeric, =1 if in service occupation

lwage column 22, of type numeric, log(wage)

expersq column 23, of type numeric, exper2

tenursq column 24, of type numeric, tenure2

wage1 21

Source

Jeffrey M. Wooldridge

References

Wooldridge, J.M. (2000), Introductory Econometrics: A Modern Approach, South-Western College

Publishing.

Examples

Not run:

data(wage1)

model.ma <- lm.ma(lwage ~ female + married + educ + exper + tenure,

data = wage1,

parallel = TRUE)

plot(model.ma,plot.data=TRUE)

plot(model.ma,plot.deriv=TRUE)

End(Not run)

Index

∗Topic Regression
lm.ma, 5

plot.lm.ma, 18

∗Topic datasets
cps71, 3

india, 4

oecdpanel, 17

wage1, 20

∗Topic package
ma-package, 2

bw (oecdpanel), 17

cps71, 3

crs, 14

india, 4

lm, 5, 14

lm.ma, 5

ma (ma-package), 2

ma-package, 2

npreg, 14

oecdpanel, 17

plot, 17

plot.lm.ma, 18

stepAIC, 12

wage1, 20

22

	ma-package
	cps71
	india
	lm.ma
	oecdpanel
	plot.lm.ma
	wage1
	Index

