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Preface

This monograph contains solutions to the exercises appearing in Li and Racine (2007).

Solutions to the empirical exercises are provided in the R environment for statistical computing
and graphics (www.r-project.org) and make use of the np package (Hayfield and Racine (2008))
which must be loaded prior to running the examples (in R type install.packages("np") followed
by library("np")).






Chapter 1

Density Estimation: Solutions

Exercise 1.1. First create (and sort for some of the plots below) the data using R:

R> x <- ¢(-0.57, 0.25, -0.08, 1.40, -1.05, -1.00, 0.37, -1.15, 0.73, 1.59)
R> x <- sort(x)

(i) Compute and graph the parametric density function for this data (i.e., compute i and 62)
assuming an underlying normal distribution.

R> plot(x,dnorm(x,mean=mean (x),sd=sd(x)),ylab="Density",type="1")
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(i) Compute and graph a histogram for this data using bin widths of 0.5 ranging from -1.5
through 2.0 (the default values in R).

R> hist (x,prob=TRUE)
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(iii) Using the same tiny sample of data, compute the kernel estimator of the density function for
every sample realization using the bandwidth h = 1.5 (we use an Epanechnikov kernel). Show
all steps.

R> kernel <- function(x,y,h) {

+ z <= (x-y)/h

+ ifelse(abs(z)<sqrt(5), (1-z"2/5)*(3/(4*sqrt(5))),0)
+ }

R> h <- 1

R> fh1 <- numeric(length(x))

R> for(i in 1:length(x)) {

+ fhi[i] <- sum(kernel(x,x[i],h)/(length(x)*h))

+ }

(iv) Using the same data, compute the kernel estimator of the density function for every sample
realization using the bandwidth A = 0.5. Show all steps.

R> kernel <- function(x,y,h) {

+ z <= (x~y)/h

+ ifelse(abs(z)<sqrt(5), (1-z"2/5)*(3/(4*sqrt(5))),0)
+ }

R> h <- 0.5

R> fh05 <- numeric(length(x))

R> for(i in 1:length(x)) {

+  fh05[i] <- sum(kernel (x,x[i],h)/(length(x)*h))

+ F

(v) On the same axes, graph your estimates of the density functions using a smooth curve to
“connect the dots” for each function.



R> plot(x,fh05,type="1",ylab="Density",1ty=1)
R> lines(x,fh1,1ty=2)
R> legend(-1,0.2,c("h=0.5","h=1") ,1ty=c(1,2))
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(vi) Describe the effect of increasing the smoothing parameter on the estimated density function.

Increasing the bandwidth results in a ‘less rough’ density estimate.

Exercise 1.2.
Exercise 1.3.

(i) First we have

o IS R e N e
Var(p) = Var (n ;X> = ;VGT(XZ) = 5 nVar(Xy) = ==,

because
Var(X;) = E(X7) - [E (X)) = E (X)) - [E(X)]” = p—p* = p(1 - p),
since X? = X; and F(X;) = p as shown above. Therefore,

p(l—p)

MSE (p) = E[p — pl” = Var (p) + [bias ()" = =
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(ii) By the Markov inequality (see e.g. Li and Racine (2007, (A.24) on page 690))

. 1. p(l—p) 1
P{Ip—plze}SEQE[p—p]Q—(n)'e?—ﬂ)

as n — 0o, since € > 0 is a fixed constant. Thus we have

plim p = p.

n—0o0

(ili) We argue by contradiction. Assume that lim p = p. However, no matter how large n is,
n—o0

there is always a positive possibility that p = 1, i.e.,, P(p = 1) = p" > 0, (X; = 1 for all
i=1,2,---,n). Also, P(p =0) = (1 —p)” >0 for any n, (x; =0 foralli=1,2,--- n).

The above results contradict the assumption that lim p = p for any p € (0, 1).
n—oo

This example shows that we need to introduce new convergence concepts such as ‘convergence
in probability’ in order to properly study convergence related to random variables.

Exercise 1.4.

Exercise 1.5. In the same manner used for proving (1.14), we have
bias (f(x)) —p! /f(x + hw)k(v)hdv — f(z) (1.1)
Since f(x) has a continuous second order derivative function, then by using Taylor expansion,
fla+hw) = f(@) + FO (o + o fO @R, (1.2)

where 7 is between = and x + hv, f®)(z) = d?f(x)/dx?.
By (1.1), (1.2) and the dominated convergence theorem, we have

bias (f(g;)) - /f(x + ho)k(v)do — f()
_ / [f(x) + 0 (@)ho + % FO (@202 k(v)dv — f(z)
- h;/f(?) (2)v2k(v)dv
- h;f(z)(ac) /v%(v)dv + o0 (h?)
because | [ f@(2)v?k(v)dv — f*(z) [v?k(v)dv| = o(1) by the dominated convergence theorem.

Exercise 1.6.



Exercise 1.7.
x . x 1 n X v 1 N i X
= | wn 2" v — = .
/_Oof(v)dv /_mnh; ( >v nh;/_m (
z—X;
1 n +o0o ) n x;
=17 "R
1 — X;
e ()
n <

where the third equality holds since we use the change of variable £ == = u, and the fourth equality
holds since we use the change of variable s = —u (and k(—s) = k(s)).

_U> dv

Exercise 1.8.

Exercise 1.9. "

E[CVe(h ;Z/ {[ (X; < ) — Fi(:v)r}dm,

=1

where F_;(z) = (n — 1)~} E?:L#i G (x_hX’> Plugging this into the above equation, we get
. 2
E[CVEr(h Z/ { (X; <x)-— F_l(a:)} }d:c
z—X; .%'—Xk
— < J < —
ot S (o= n-0 (552 o zor-0 (52 o

1=1 j#i k#i

_ (nil)/E{[qu gx)—G(x _hX2>r}dx
B I

=CVi + CVs,

where the definitions of C'Vy, CV5 should be apparent.
Next,

v~ ity [ oo <o-e (53] o
_ (nl—l)/E{ 1(X; < 2) — 21(X; < 2)G (‘T —th) + (G (x_hXQ»Zde

= L [Py —2— [ Fa) |F(2) + 2r:h?F () + 0 (h?) | da
(n—1) (n—1) 2

1

e / [F(z) — aohf(z) + O (h?)] dx

_ (712_1)/ [F(z) — (F(2))?] dx—clnﬂ 0 <}:>
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where we have used

and
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Finally,

Summarizing the above we have

E[CVE(h)] = CVi + CVy

2

- (n_l)/ [F(x) — (F(x))* - gcl(x)h +0 (hQ)} dz

22 [ [P - Ee+ 3 [FO@] o (0] e

_ /F(m)(l _ Fa))do + —

n—1
+ COyh* + o (hrf1 + h4) .

/F(a:)(l — F(x))dx — Cihn™!

Exercise 1.10.

Exercise 1.11.

N 1 n X1 — 11 Xiq—xq
- 2 cox k(e T
f(x) Tlhl"‘hq; ( h )X % ( h

bias (f(x)) = E (f(a)) - f()

. 1 Xil—xl Xz — X
_E[nhl--'hk< I >><---><k:<qhq q>]—f(:n)




where fs(z) = 0% f(x)/0xs0z, the third equality holds since we use the change of variable ” —%s —
v, the fifth equahty holds since

q

q
fla+ho) = +Zfs hvs—l-;ZZfst hhtvsthrO(Zh?’)

s=1 t=1 s=1

() = " —o) (Xt
Var(f( ))—V hq;k( >>< xk( e >]
1 Xﬂ—xl Xl' — T
nh? - h2 hy hy
1 i1 — T Xl'qfﬂfq 2
= Flkl — El — 4
nh%~--h3 [ < hy )X - ( hg
1 Xi — X Xi — X 2
e () e (2]
nh%--hg{ [ hi hy
—1/f(x<) P e T IV A (Ll 2dm+0 S
_’I’Lh%hg ’ h1 hq ’ nhl---hq
Kq

_ 2 1
T nhi--h f($)+0<zhs+nh1...hq>'

q s=1

Exercise 1.12.

Exercise 1.13. We assume that f is continuous on [0,1] and that f(0) # 0. We know that
flz)=(mh) ' " k (th_z) Hence,

Therefore, f(0) is a biased (even asymptotically) and inconsistent estimator for f(0). We need
to use a boundary kernel to get a consistent estimator for f(0) as the next exercise shows.

Exercise 1.14.
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Exercise 1.15.

==

-3

(57
=1

3\'—‘

where k(-) is a vth order kernel function.

i;;k (Xih‘”“)] f@)=F [;k<X1h‘I>] - (@)
k(xl_x>f(x1dx1 /k f(x + hu)du — f(z)

bias [f(x)} =F
@)+ % £ ()Y / F(u)u’du + o(h) — f(x)
= Loy / k(u)u”du + o(h")

TS

h
() [#0) PO @bt S PO+ o) 10

Var 1] = Ver ;éfik (X,h )] _ %.nVar [ik <Xh_m>]
A e
Y B s (] i () o)
_ % {/ [;k(u)] F(z + hu)hdu — </ [fl/c(u)} f(a:+hu)hdu>2}
_ nlh/[k(u)] (@ + hu)du + O (h2(nh)Y)
= T%f(x) +o((nh)™")
By

where r = [ k(v)2dv.
Exercise 1.16.

Exercise 1.17. Consider the Italy data from Section 1.13.5 (included in the np package) and the
rule-of-thumb bandwidth selector for GDP for the year 1998 (i.e., the last year in the panel) using
the default second-order Gaussian kernel:



R> data(Italy)

R> gdp.1998 <- subset(Italy, year==1998)$gdp

R> bw.rt <- npudensbw(~gdp.1998, bwmethod="normal-reference")
R> summary (bw.rt)

Data (21 observations, 1 variable(s)):

Bandwidth Selection Method: Normal Reference
Formula: “gdp.1998
Bandwidth Type: Fixed

Var. Name: gdp.1998 Bandwidth: 3.63 Scale Factor: 1.06

Continuous Kernel Type: Second-Order Gaussian
No. Continuous Vars.: 1

We see that the normal-reference rule-of-thumb for gdp is h=3.63. We can plot the estimate as
follows:!

R> fhat <- npudens(~gdp.1998,bws=bw.rt)
R> plot(fhat,neval=100,xtrim=-0.75)

Density
0.03 0.04 0.05
! ! !
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|
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|
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|
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gdp.1998
Italy GDP data (1998), h=3.63

Now you can try larger manual bandwidths. Trial and error indicates that a bandwidth of
approximately 4.1 (i.e., greater than 1.13 times the normal-reference rule-of-thumb bandwidth)
appears to obscure the bimodal nature of the relationship as the following plot demonstrates:

!Note that the use of xtrim alters the domain for the density estimate by extending it by the data’s 75th percentile
in either direction so that the density estimate touches the horizontal axis. Also, the use of neval increases the number
of evaluation points above the default resulting in a slightly smoother estimate in between the two modes.
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R> fhat <- npudens(~gdp.1998,bws=4.1)
R> plot(fhat,neval=100,xtrim=-0.75)
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Italy GDP data (1998), h = 4.1

Finally, we can plot the estimate based on least squares cross-validation. First we obtain the
bandwidth object:

R> bw.cv <- npudensbw(“gdp.1998, bwmethod="cv.1s")
R> summary (bw.cv)

Data (21 observations, 1 variable(s)):

Bandwidth Selection Method: Least Squares Cross-Validation
Formula: “gdp.1998

Bandwidth Type: Fixed

Objective Function Value: 0.0446 (achieved on multistart 1)

Var. Name: gdp.1998 Bandwidth: 1.99 Scale Factor: 0.58

Continuous Kernel Type: Second-Order Epanechnikov
No. Continuous Vars.: 1

Note that the cross-validated bandwidth h=1.99 is smaller than that for the normal reference
rule-of-thumb (i.e., 0.55 times the rule-of-thumb bandwidth), and the resulting plot displays a more
pronounced bimodal structure:

R> fhat <- npudens(~gdp.1998,bws=bw.cv)
R> plot(fhat,neval=100,xtrim=-0.75)
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Judging from the above plot and a histogram of the same, the cross-validated estimate appears
to be sensible.
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Chapter 2

Regression: Solutions

Exercise 2.1. By definition we have my (z) = (nhy---hy) 130 (9(Xi) —g(z) K (Xih_x>, and by
(2.8) and (2.9), we have

q

E [y (x)] = f(x) > _ hIBs(x) + O (Z h§> and  Var[m(z)] = O ((nhl chg) Y hi) .
s=1 s=1

s=1
Hence,

q

E |in(z) — f(x) ) h2Bs(x) i (x) — f(z) Y h2Bs()

2 q
Zhi) ) +0 ((nh1-~hq)—12h§>
s=1 s=1

2
) + Var [my(x)]

1
+mng) - (2.1)

By Lemma A.7 (ii) (Li and Racine (2007, page 686)) we know that (2.1) implies that 7 (z) —
f(@) Y0 h2Bs(z) = O, (ng/Q + ni/zn;ﬂ). Or equivalently,

s=1"s
q
(@) = fo) 30 h2B(x) + Oy () + 0t "n}/?)
s=1

Exercise 2.2.

13
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Exercise 2.3. Let Kp;j = Kp a0, = [1721 hy 'k((Xis — Xjs)/hs), we have

s=1""s

nhY s (9(X0) — §-4(X0)) M(X,)
i—1

n n

— o 2o (90X~ g0X) Kng M(X0) [ (X) + (s.0)
i=1 j=1,j#i
- (n—ll) > > uilgi = 9i)KnisM(X:)/ F(X0)
i g
~ T 2 2t KM (X0 £(X) + (s.0)
i gF
=1 — b+ (s.0),

where I} = ((n — 1)n)"t >, > i Wilgi — 95)KniiM(X;)/ f(Xi) and (s.0.) denotes smaller order

terms.

E(If) = <n_12n2 [ZZZU — 95 Knij (95 — 90) K a[M(X)]2/ [F (X))

1 jF# 1#
- (n—11)2n22 lz >, o — 93) Knij(9i — 9) Kna M (X:)1?/[f (X))
i JF#UIALA]
o= 1 — i ZE > o2 (Xi)(gi — )2 KR o M (X1 /[f ()]
J#i

- (n—ll)znz > E [Z > o(Xi) (B((gi — 9)Knij))” [M(X)12/[f(X)P|X
i L
1

+ oy = 1O ((hl . hq)’1> ©(5.0)

_1o ((Zq; h§>2) +0 ((n?h1-++hg) ) + (s:0)

=0 (n_lng + n_lm) .
The above result implies that

I =0, (nflﬂnz + nil/Qni/Q) .
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Next,
P = szE LM+ s 35 B KR M )
[ E i JFi
= n 2712 ZZE )KhmMz/f]
i j#i
n—lzTLZZZE )Khz]MM/flf]]
i jF#
=0 ((n*m--ng) 7).
Hence,

L =0, (n—l/Qni/Q) '

Summarizing the above we have shown that
n
n S (9(X0) — §-i(X0) M(X) = I — I + (5.0.) = O, (n_1/2772 + n—l/Qn}/Q) .

Exercise 2.4.

Exercise 2.5.

Q) f(z)= %Z?:l Khx 2; K2z, By the independence of X; and X;, we have

1 n
EE Kh,ma:iKh,:rxi
=1

E|f(@)| =

=F [Rh,xxikh,x ,x,} =F [Rh,xxi] E [Kh,x:ri}

= f@)F [Knaa)| + 0 (R




16 2. REGRESSION: SOLUTIONS

E [ml(a:)Q] N o ZZ Kh7m;pif~(h,xri (gj —g()) Kh,xjf{h,wj
i =1 j=1
=F 2 Z Z I_{h,xa;ikh,mxi (gj - g(j)) I_{h7;vjf~{h,a:j
1=1 j=1,j7#i
+ E % (71 - 7('f))2 K%,xml g,m%]
=1
- ~ 5 2
= n(nn2 1) {E |:(§z — g(:f)) Kh :cleh,xa:z:|}
‘f‘%E (gl_g(j))zK?zxxl /%,a:xl}
1
= 20D B (G ) K] { B[R
$ B (g 9 K| B [RR
q1 2
— | By(2)h2f(2) {E [Khm}} +o(n5,,)
s=1

Q|

PR
/‘\
\_/
&ﬁ‘

A

\/
:‘

no
+
&)

—~
3
l\)

2
3
=
S
S—

2
A I o
E [’1712(3})2] =F ( UiKh,xa:iKh,xm)
L n i=1
[ 1 n n
=F ﬁ Z Zuth :ra:lKh xrT u]Kh m]Kh,x]

L i=1 j=1

L i=1
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(v)
B [An@)]? = Blin(e) + i)/ [F@) B (Rna)]
2 iy (2)? + 20 (2ins(2) + (2] | [FE) B (o)
= (B @)?) + 0+ Bin@)?)] / [F@ (e,
a 2 2).2 a E |K?
- [ B A ) (ggzwg) F (E(hh;]
K0t (z) Bk, + (50
A i)
[ BS(@,@] ) (L o) s 0 et) - L
(o)
(v) From (2.112), we know that in order to minimize CV, hg 41, ,h, must minimize

E|K? - 2
R(Z,hgi41,--+ ,hg) = M It is obvious that E [K,%mj } / [E (Khx%)} > 1, and

when (hg, 41, ,hq) = (00, ,00), E [f(f”mz} / [E (K’hwxl)] = 1. Define Z,, = Kh,:va:i‘ If
one of the hy (for s = ¢1+1,...,¢q) does not goes to oo, then it is easy to show that Var(Z,) =

E[22] = [E(Z,)]? > 0, which is equivalent to that & [K,%m } / [E (f(h,mi)r > 1.
Thus, (hg,+1,- -+ ,hq) = (00, -+ ,00) is the unique solution.
Exercise 2.6.
Exercise 2.7.
(i) A} =n'Y, Kpix = f(z). Hence, we know that A" = f(z) = f(z) + 0,(1).

(ii) A12 =n"t EZ Kh,i:c(Xi —x)". Hence,

=0+ ko (vec (h?fs(x)))/ +0 (’hlg) )
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where vec(h2 fs()) is a g x 1 vector with the s position given by h2 fs(z), k2 = [ k(vs)v2dvs
and |h| = 37, hs.

It is easy to show that Var(A}y) = O (|h*(nhy ... hq)). Hence,

AL = Op (|1 + Bl (nha . hg)2) = Op (1o 40y *mi %)

(iii) By noting that D;Q is a ¢ x ¢ diagonal matrix with the s*"-diagonal element given by h;2,
then using the same proof as in (ii) above, one can show that

E(A57) = rpvec(fs(x)) + O(|h]) = ko f M (@) + O(|h)).

Also, it is easy to show that Var(A%’lx) =0 <(n (hi...hg) \h\2)71> = o(1) provided that

n(hy ...hy)|h|*> = 0o as n — co. Hence,
Ay" = raf V(@) + 0p(1).
(iv) It is easy to see that
E(Ay)=FE [Kh Dy x)(X — g;)']
/K ) (ho) (s . . hy)dv

~ raf @)1, ( / kz(vs)vidvsf(x)) +O ()
= raf(z) + o(1),
where Diag(bs) denotes a diagonal matrix with the s*” diagonal element equals to b,.

Noting that Aé’; is a ¢ X ¢ matrix, it is easy to show that for each component of Aé’zx (which

is a scalar), its variance is of the order of O ((nhl e hq)_l). Hence, we know that

A;’; = kof(x)I; + O, (|h|2 + (nhy ... hq)_1/2> )

Exercise 2.8.

Exercise 2.9.
(i)
Var (AY") = (nh?...02) ™" B [K7 0]
= (nh?...n2) " / Fa)K (2 — 2)/B)? 02 () d

= (nhi... hg)il / f(x + ho)K(v)?0*(x + hv)(hy . .. hy)dv

q

[T [ (wey2dv. + o(1h)

= (nhy...hy) [f(:z:)aQ(x)
s=1

= (nhy...hg) 'K1f(x)o*(x) + 0 ((nhy ... hg) ™),
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which is equivalent to
Var ((nhl . hq)l/QA‘I)’x) = kIf(x)o?(x) 4+ o(1).
(i)
Var (DhAgw) — (nh3...02) " E[K2, DN (Xi — 2)(X; — 2)' Dy 'l
= (nh% e hg)_l /f(:nz)K ((z; — ) /h)? o*(z;)D;, (% — x)(x; — )’ D;, M

— (nh3... 027" /f(:c + hv) K (v)*0®(z + hv) D, (hv) (hv)' Dy (ha . .. hg)dv

= (nhy...hy) " { Diag[f(x)o*(x) / E(vs)*v2du, H/k(vj)Zdvj] + O(|h])
J#s
= (nhy...hy) kT koo f(x)0?(x) 4 0 ((nhy ... hq)_l) ,

where k92 = [ k(vs)*v2dvs. The above result is equivalent to

Var <(nh1 . .hq)1/2DhAg’x) = kif(z)o*(x) + o(1).
(ii)
Cov (Ai”x, DhAgvx) = (nh3...02) B [K2, DN (X — 2)'ul]
= (nh? ...hg)_l/f(a:i)K((xi —2)/h)* o (x;) Dy, Ha; — x)d;
= (nh?...12)"" / F(@+ ho) K (0)202(@ + ho) Dy (ho) (b - .. hy)do
= (nhy...hg) " {0 + o(|h])}
= O (|h|(nh1...he)™Y),

where in the fourth equality above we used | K?(v)vsdv = 0 because K (v)? is an even function
(since K (v) is even). The above result is equivalent to

Cov <(nh1 L hg)YV2AYE (nhy .. hq)1/2DhA§’x> =0(1).

Exercise 2.10.

Exercise 2.11.

(i) Compute and plot the local constant, local linear, and parametric quadratic estimates using
least squares cross-validated bandwidths for the kernel estimators.

R> data(cps71)

R> attach(cps71)

R> model.lc <- npreg(logwage~age,regtype="1c")
R> model.1l <- npreg(logwage~age,regtype="11")
R> model.ols <- 1lm(logwage age+I(age~2))
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R> plot(age,logwage,cex=0.25,col="gray")

R> lines(age,fitted(model.1lc),lty=1,1lwd=2,col="red")

R> lines(age,fitted(model.11),1lty=2,1lwd=2,col="blue")

R> lines(age,fitted(model.ols),1ty=3,1lwd=2,col="green")

R> legend(20,15,c("Local Constant","Local Linear", "Quadratic OLS"),

+ Ity=c(1,2,3),
+ col=c("red", "blue", "green"))
ﬂ -
— Local Constant
- Local Linear
Quadratic OLS
: -
[}
g

12

20 30 40 50 60

age

(ii) Is the dip present in the resulting nonparametric estimates?
Yes, there is a dip present in the nonparametric estimates.
(iii) Plot the nonparametric estimates along with their error bounds using the asymptotic formulas

for the standard errors (i.e., g(z) £25(g(z))). Without conducting a formal test, does the dip
appear to be significant?

R> plot(model.lc,plot.errors.method="asymptotic",
+ plot.errors.style="band")
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logwage

20 30 40 50 60
age
R> plot(model.1l,plot.errors.method="asymptotic",
+ plot.errors.style="band")
8
8 e T
g
g, Y
S g
o
T T T T T
20 30 40 50 60

age

It does not appear, based on the pointwise standard error bounds, that the dip is significant
(i.e., a line segment connecting the top of the two ‘humps’ would lie within the standard error
bars).

(iv) Which nonparametric estimator (i.e., the local constant or local linear) appears to provide
the most “appropriate” fit to this data?

The local linear estimator appears to be doing better fitting the data for low values of age,
while it is also less noisy (i.e., smoother).
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2. REGRESSION: SOLUTIONS




Chapter 3

Frequency Estimation with Mixed
Data: Solutions

Exercise 3.1. The hint in Li and Racine (2007, page 124) is a solution to this problem.

Exercise 3.2.

23
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3. FREQUENCY ESTIMATION WITH MIXED DATA: SOLUTIONS




Chapter 4

Kernel Estimation with Mixed Data:
Solutions

Exercise 4.1. E(p(z)) = E[1(X;=12)] = ZE:Sp(wi)l(mi = z) = p(z) and Var(p(z)) =
nWar(1(X; = ) = n ' {E1 BAX, =a)’} = 07 [p=p?] = n7'p(1 - p).

Hence, MSE (p(x ))—n Ip(1 — ):O(n_l).

Exercise 4.2.

Exercise 4.3.

(i) A short proof is given by

T

Elp(a)] = E o' Y. L(X02,N)| = E[L(Xoa,N)] = % pla)L (Xia,A) = pla) 11 -

i=1 ;€S s=1
r r
M)+ UM S LEN) + O(A) = pla?) + A Y By where By,
s=1 t#£s zd s=1
>y Ls(a?, 2%) = p (2)

25
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n
We also give a longer proof below. From (4.3) p (acd) = % > L (Xid, z¢, /\), we have

=1

n

5 (24 = 1 d_.d _ d .d
£(o()) =2 (250 (xtrt) ) = (1 (x1.%)
=Y {H1(m§:z5)ﬂ(1—xt)+21( Hl As 1H(1—At)
t=1 s=1 Cs

2degd t=1 t#s t#s
A Ai
E d d d d
+ 1(.'13'11 #211) ( 7,2 #Z’LQ H 1 xt - t) ’L_llc 2_21 H (1_At)+}p (Z )
1< <2 <r t#i1,i2 *2 t#i1,i2

) (S

r
:p<xd)H 1—XN)+
t=1 Zdesdsl t#s

/\11/\12 o d _d d
+ Z Z (11—1)(62‘2—1)121’12(1‘72) (1—=X\)p z)—{—

2484 1<i1<ig<r t#i1,i2

) £ () 69 o ()

s=1 2d eSd s=

_ <$d) n Z By shs + O (Z Ai) :
s=1 s=1

We have used the Geometric Inequality ﬁ a; < i al/n, for a; > 0,9 =1,--- ,n to obtain the
form of the residual term in the previous deld:ulctiom.zz1

Now, we will get the form of Var (p(x)). Since the X;’s are i.i.d, p (a:d) = % i L (X;i,a:d, /\),
we have =

Var (ﬁ (f’)) — Var (711 Z L <Xfl,a:d, A)) — %Var (L (Xf, 2 )\))
e (1) - e e (50’
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24e8d, zdtgd s=1

E (m2 (xd‘)> —E <n—1 z:;uL (Xf,xd, A)) —E (ulL (Xf, I )

—E [E (ulL (Xf,xd, )\) \Xf)] —E [L (Xf,xd, )\) E (ulpql)] = 0.

We use the Law of Iterated Expectations to get the third equality.

Hence, £ [ (24)] = O (; )\$>

Second, we show that Var [m(
Hence, Var [m (:):d)] =Var [fnl (acd

)

9 -0
+m (xd)

)

( _1). We know that X; and u; are uncorrelated.

=Var [ml (:L‘d)] + Var [m2 (xd)].
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Var [ml (a:dﬂ —nWar Kg _g (ﬂ)) L (Xf, 22 A)]
e ) 5] () ()T
- { S 3 (o() - (o) et () -

2dgSd zdztgd s=

(5 566 s ) |

2deSd zdtyd s=

=0 (n_l) .

Var [mg (a:dﬂ =n"Var [ulL (X{l,:cd,)\ﬂ =n"'E (ulL <Xfl,a?d, /\))2
—nlE [E (qu2 (X;i,xd A) ‘Xd)} —nlE ( 2(xd)L? (de,xd,)\))
=n"lo? (wd>p<xd)+ Z Z ( )A21 4 d)p(zd>+-~:O(n*1).

We use E (uiL (Xd d )\)) =E (L (X{, 2% )\) E(u1]X1)) = 0 to get the second equality.
Hence, Var [ ( )] (nfl)

Therefore, we get E ( ($d)2) =Var [ (z%)] + (E [ (asd)])Q =0 <sé A2+ n1>.
Exercise 4.4.

Exercise 4.5. We substitute >4 [p (CL‘d)] =n2Y" DY) L( ) into equation (4.8) (Li and
Racine (2007, page 129)) to obtain

YO =53 S I - - T 1ZZL

—1] 1 i=1 j#i

1 n
nQZ 1); [L() oL, }_7712(”_1) ;LE?)- (4.1)
i= Ve

We will first compute E [Lgi)], E [Lz(j)} and E [L;j] (j # i) Note that LZ(-JQ») = i Lyizly jos

B[] - XX (#) .
W)+ T T ()

xq d# d

=(1-2)2+0(N)=1-21+0()?). (42)

we have
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Define p (xd) = i sz#xd D (zd) We have
£[e5] - T ) ()
ST T S )

d#xd

DI (><>( PSS o)

d#xd d?gx zd

adzad
2
:(1—2A+A2)§p(xd)2+)‘2%: c_llx;dp(xf)
1= AN p () cil > r(+!)
2t

zd xd
2 A
_ d d _ d d d
= S5 () 8) = S () 40 50 6) 5 () 2
z¢ x? xd xd zd=£xd
d\> d\ = (..d a\?
:Zp<x) —I—)\Z p(m)p(x)—p(m) . (4.4)
xd T4
Combining (4.1) to (4.4) we obtain
E[CV(\N)] =DiX —Dydnt+o0 ()\2 + )\n_l) + terms unrelated to A,
where Dy =) 4 [p (:cd) — D (:cd)]Q and Dy = 2, both are positive constants as claimed.
Exercise 4.6.
Exercise 4.7. Let §; = g—;(X;) and using Y; = ¢; + u;, we have
CVi=n"'> (Yi-§)=n 12 D2/D7 + 2n” 12% 9i — Gi)bi/Di +n” 1ZU

Since the third term is unrelated to A, then minimizing C'V} is equivalent to minimizing C'V} o:

CV)\OZn IZ /pz + 2n~ lzuz 9i — Gi pl/pz (46)
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Using §; = n~! Zﬁgl iLij/Di, Yj = gj + uj, and Lij = L (24,25, A), we have
CV)\()—TL 3222 }/Z)szLzl/pz +2n~ 222“1 9i — Y] z]/pz
i jFL 1F#£ i jFi
1 .
3 S (9 — 99 — 9 LisLa [}
i AL I
1 . 2 .
w5 2 2 > wuLyLa/p} = 53 ) wiyLy /b
_ZZZUz i ’L]/pl 3222 — 9j ule]Lzl/pz
i jFi 1 jFL 1F#
= 51+ 52 + 283, (4.7)

In Lemmas 4.1 to 4.3 we prove that (D is the support of X)

2
Z[ (ZP Loz (g(x) — 9(2))>] p(x) ' 40, (V) (4.8)

€D z€D

where 1, is an indicator function which equals 1 if x # z, and zero otherwise.
1
Sy = —=X[A+ Zi,] + 0p (A + 17 \) + terms unrelated to A, (4.9)
n
where A is a positive constant and Zy,, is a zero mean Op(1) random variable.

1
S3 = —AZay, + 0p (n_l)\ + )\2) + terms unrelated to A, (4.10)
n

where Zy, is a zero mean Op(1) random variable. Therefore, (4.8), (4.9) and (4.10) lead to

CVao=)

zeD

2

AN s () (9(@) = 9 ()| @) = AA+Z) +(s0),  (@1D)

z€D

where Z,, = Z1, — 222, and (s.0.) = op (n_l)\ + )\2) + terms unrelated to .
Note that (4.8) can be written as S; = QA? + o, (A\?), where

2
a=%" [2 1o42p(2)(g(x) - g<z>>] pla)! >0

provided that g(.) is not a constant function. Thus, from (4.11) we have

dCVao
B

= 20X — " [A+ Z,) + (s.0) 20, (4.12)

(4.12) leads to A = Op (n71).
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We will use the following identity to handle the random denominator,

1 1 B 52
— == + (p’L 2pl) + (pl 2}91) . (413)
pbi  Di b; bipi

Defining p; o = ﬁ Z#i 1;=¢, and p;1 = ﬁ Z#i 1, 4a;, we have

R 1 1
bi —Pi =Di — n_1 ZLij =Di— n_1 Z |:1$]':Z'7; + All‘j#ibl’]
J#i J#i

= (pi — pio) — Api1 = Op (n_1/2> + Op(N), (4.14)

the last equality following because maxi<j<n [pi — pio| < sup,ep [p(z) = n 'Y, 14—a|[+0 (n71) =
O, (n~/2) (since D is a finite set) and maxi<i<, pi,1 = Op(1).
Substituting (4.14) into (4.13), we get

1L 1 (pi—pio) |\ Pia ~1/2 2
i_pi+ p? _)\pz O ( )—i—Op(n )\+)\>. 19

’U>‘

The above O, (n™!) term comes from (p; — pi0)? /p} and is unrelated to A. From (4.15) we get

1 1 (i — Pip) Pi -1/2 2
- = —5 +2 : 2\ +0p +O, (n A+ AT, 4.16
p? p? p3 p3 ( ) p( ) (4.16)

where again the O, (n™!) term is unrelated to A. Both (4.15) and (4.16) will be used to handle the
random denominator in the proofs below.

2 _
Lemma 4.1. 51 =Y, p [A (X .cp 1axop(2)(9(2) — 9(2)))] " p(z) ™1 4 0, (A?).
Define S the same way as S; except that D; 2 is replaced by pi_2. That is,
def 1
S = Z Z 9:)2Li; [0} + Z Z Z — g1)LijLa/p; = S1a + S
i#£] i#£j#l

It can be shown that Sy, is asymptotically negligible compared to Sip. S1p can be written as a
third order U-statistic. Then by the U-statistic H-decomposition one can show that

Sy =F [Slb] + (8.0.). (4.17)

By noting that (g; — gj)1s,=s, = 0, we obtain

E[(gi — g;) Lyjilw; = 2] = A Lozap (2) (g () — g (2)) + O (A?) . (4.18)
z€D

Hence, we have

2
E[Su] = E [{E(g: - g;)Lyil=i]} /9] = > [AZ Loza(2) (9(2) = 9() | p(2) ™" +0(A).

€D z€D
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By (4.17) and (4.19) we have

2

S =3 13 A 1eep (2) (9(@) — 9(2)| pl@) +0, (A2). (4.20)

z€D Ls=1 z2€D

Lemma 4.2. So = —n " "NA+n"\Z, + Op ()\2 + )\71) + terms unrelated to A, where A >0 is a
positive constant, and Zi, is a zero mean Op(1) random variable defined in the proof below.

Sp=n"Y Y WLE/P A0y D D wpmiLiiLa /B = 2077 ) Y uiusLij/pi
J#i i#j#l J#i
= Soq + Sop — 257

Using (4.16) and noting that ij)\ = O (X\?) if zj # x;, we have

Soy =n "3 Z Z 1351:931.11?/1512 + O, (n_l)\Q)
i

=073 0 Loyl [1/p7 + 2(pi — pio)/D} — 2Xpin /pE] + O (n‘3/2>\ + n‘1/2>\2>
J#
A
= _2E n 2 Z Z 1m].:$iujz-pi,1/p§’ +0, (n_g/z)\ + n_1/2)\2> + terms unrelated to A,
J#i
=-—n"1A\A+0 <n73/2)\ + n71/2)\2) + terms unrelated to A,

where A = 2F [1xj=x¢U?Pi,1/pﬂ is a positive constant, and we have used the fact that

272 Y 0 e ipin /) = A+ Oy (n_m) : (4.21)
i#i

(4.21) follows from the U-statistic H-decomposition because 2n=2 3 >t Ly,=,u5pi1/p} can be
written as a second order U-statistic.

SQb = n*3 Z Z Z U;u; [1(:}3’] = :ZIZ) + )\1%751«2] [13”:%. + Alml;ﬁxl]
i#i
x [1/p} + 2(pi = pio) /9] = 22pia /pi] + Op (n71N?)
= n_l)\2n_2 Z Z Z Ule |:1Ij=$i 133l7é$z + ]_(.CL‘Z = xz)]-a:];émz
i#]#l
—2 X 1$].:zi1$l:$ipi’1pi_1} /p? +0, (n_3/2/\ + n_l/z)\2> + terms unrelated to A

=n"N\Zs, + Op (n_3/2)\ + n_1/2)\2) + terms unrelated to A,
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where Z3, = % > Zi;ﬁj;ﬁl % [1xj:xi1xz7$mi + 1xl::ci1(xj #T;) —2 X 1zj:CCi1Z‘l:xi < p;Tl} is a

zero mean Op(1) random variable, and we have also used the fact that p; — pio = Op (n_l/ 2).
Letting ¢, = n~'A\2 + n=3/2)\ + terms unrelated to A, we have

Soc = n72 Z Z U;Uj [1xj::(:i + )\1315]75%] [1/pz + (pi - pi,())/pz2 - )\pi,l/p?] + Op(Cn)
J#i

= 71 Z Anil Z Z Uzug x];éxl/pz - a:J:xipi,l/pﬂ + OP(CH)

JF
=n""\Zy, + O, (n_l)\Q + n_3/2)\> + terms unrelated to A,

where Zy, =n~ 1> > witij[1(zj # ;) [pi— Lo;—e,pi1/P?] is a zero mean Op(1) random variable.

The term associated with p; — p; o is of order Op(n_3/2)\) because maxi<j<n |pi —pio| = Op (n_1/2).
Summarizing the above we have shown that

So = So, + Sop — 259, = —n~I\A + nil)\Zln + +Op(<n> (4.22)

where Z1, = Z3p, — 2Z4y, is a zero mean Op(1) random variable.

Lemma 4.3.

Sy =n""NZsy + 0, (N + 171N,

where Zay, is a zero mean Op(1) random variable defined in the proof below.

_szuz gi g] z]/pz_n 322 Z —Gj ulLle’Ll/pz

i i#i#l
_3 Z Z — 9 uJng/pz - S3a - S3b Sgc.
i jFi

Letting &, = An~'/2 + M ~3/24 terms unrelated to A, then using (4.15) and noting that
(gi - gj)lmjzxi = 0, we have

Ssa=n"2Y > ui(gi — gj)

0+ Z Alxﬁéxi] [1/pi + (pi — pip)/P}] + Op(én)

jF#i s=1
= An72zzlmﬁémluz( 9i — 9j /pz+)\n 2221%;&%“1 9i )( —Di 0)/pz +0 (gn)
37 J#

= S34,1 + S30,2 + Op(&n)- (4.23)
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Next, we consider S3;. Again noting that (g; — g;)1z,=+, = 0 and using (4.16), we have

S3b =n 322 Z Ul gj 0+>‘1($] 7&33@)” x;= xz] [1/]71 +2( sz)/pz] +O (&n)

i#j#l
7322 Z 1:%75:1:1 = mzul( g])/pl
I#j#i
+200 7 SN N 1y # @) Lame walgi — 95) (i — i) 0} + Op (€0)
I#j#i
= Sgb,l + 2531),2 + Op (n_1/2)\2 + n_3/2)\> . (424)

Note that maxi<i<pn [pi — pio| = Op (n_l/z). It is easy to see that both Ss,2 and Sspo are
of order O, ()\n_l). Although S3,1 and Sz, are both of order O, ()\n_l/2), we will show that
S3a,1 — Sap,1 = Op ()\n_l). To show this, we need to re-write S3; 1 in a form similar to S3q,1,

Sgbl—)\’rl 322 Z ]-r];ézl = xzul( g])/pz

i JFLIFLIFE]

=Y NN Ly da= (o — g5)/p] (since @y = ;)

i JFLIFLIFE]

QZZ Lojota w (g0 — 9 /pz n- Z 1p=o;

Jol#j i#£j,i#l
— * « def _
=n 2 Z Z 1(1[‘] 7& :Bl)ul(gl - g])pl,O/pl2 (pl,() é ! Zz 1,i#7,i#l xl $1)
Jol#
= A 2SS il — 9o/ + Op (02, (4:25)
J i

where in the second equality we used ¢g; = ¢;, py = p; because x; = x; due to the restriction
1(z; = z;). The third equality simply reorders the summations. The fourth equality follows from
the definition of pj,, while in the last equality we used maxi<j<n |pro — piol =0, (n_l) (pro =
n! >i—1,iz1 laoy=2;) and we changed summation indices from (j,1) to (j,%).

Note that both S3,1 and Ss;; are of order O, ()\n_l/Q), but we have (using (4.25))

Ssat S = oA 0SS Ll — 03)(— i)/ + Oy (n2)
J#i

= S342 + Oy (n_3/2A> , (4.26)

which is of the order of O, (An!) because E [S3,,] = O (A>n~?) (since maxi<i<n [pio — pil =
O, (n~1/2)). Finally, noting that (g; — 9j)le;=2; = 0, and that 1(z; # xi)ij = O (A?), we have

Sae =" " 1y 0, (9i — gj)u; L3 /57 = O (n'X?) . (4.27)
J#i
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Now, combining (4.23), (4.24), (4.26), and (4.27), we obtain
S3 = (S34,1 — S3p,1) + S30,2 — 25352 + Op (§n) = 2534,2 — 25352 + O) (&n)

nl)\{ ZZlm]¢$l ( —Pio /pz [ - = Z ]-a:l zzul/p2:|} (n)

JFi
=n""\Zyy + Op ()\Qn_l/Q + /\n_3/2) ,

l;ﬁz l#j

where Zoy = 23530 Lu e (9 — 95) (i — pio) /D] [uz — i lzl:xiw/m] Using

Lol — —1/2)
nax Ipio — pil = ( ,

it is easy to see that Zy, is a zero mean O,(1) random variable.
Exercise 4.8.

Exercise 4.9.

() () = i (@) + ina(e), where i (x) = (nhy .. )~ Si(g(X) ~ g(a)) Kz and rins(a)

(nhi...hg) 'Y, uiKiy. Obviously, E (s (x ))—O Hence, F (17 E:U) E (m1(x)), and

B (@) = ()™ Y [ laten) — g(0) (

./I/‘l_x

)L(xl,a: /\ dx§

= (i) | [g(xi,x% —g@)] W (“"’3;‘%) ot

(4.28)

t (b hg) ™t Y 1a(af,m )\/ (z1) W<1h$>d:n§+0(|/\|2)

desd
52/2 Zhg gss +2gs( ) s(.l‘)/f(.%')]
s=1
+ ) Lu(af, ) [g(xc,:ri’)—g(w)] +o (|hl* + Al

dGSd
q
= " Bis(a)f( h2+Zst 2)As + o([h[> +|A]),
where the second term in the third equality follows since
—1 x? —z° c —1
(1. hy) /[g(:cl) )W (B dag = ()
X / [g(:rc + ho, z¥) — g(xc,:rd)} W(v)(hi...hg)dv
= [ote,at) = atas®)] | [ wrae] +0 a)
= [9a®,af) = g(a®,2%)| + O (1h2).
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Note that g(z¢, x{) — g(z° %) # 0 since ¢ # 2? (because ||z{ — z%|| = 1 due to the factor
Ly(2f, 2)).

(ii) It can be shown that the leading term of Var (m(z)) comes from Var (ma(x)). Also, using
L (X424 )) = 1(X¢ = 2%) + O(|A]), we have
R § —x
Var (a(z)) = (nhi.. h2 Z /f x1)0% (2 W2< 1 - )L2 (xl,m /\> dx§
riesd
= (1) [ st o0 oty (B ) a4 01 |
= (nhi... 1{/]" ¢ + hv, 24 ($C+hv,z:d)WQ(v)(hl...hq)dv—l—O(W)}
= (nh; .. 1{ 2(x ,xd)/WQ(v)dHo(|h|2)0(|A\)}
Klo?(x) f(x) 2
=—"7"—=[14+0(|h A
I 0 i+ )
Similarly, one can show that Var (fa(z)) = O (|h|*(nhy ... hg)™') = o ((nhy ... hg)™'). This
completes the proof for (ii).
(iii) It is easy to show that E(f(x)) = f(z)+ O(|h]2+|\]) and Var (f(a:)) =0 ((nhl . hq)_1>.

These results imply that MSE(f( ) =0 ((\h\Q + \)\\)2 + (nhy ... hq)_1> and f(z) — f(z) =
Op (Il + X+ (nhs . h) ) = 0,(1).

Exercise 4.10.

Exercise 4.11. The hint in Li and Racine (2007, page 153) provides a solution to this problem.



Chapter 5

Conditional Density Estimation:
Solutions

Exercise 5.1. There are some typos in Li and Racine (2007) regarding the statement of this
exercise. In particular, Bao(Z,y) was missing and h2 ()\s) should not appear in the definition of By
(Bas). The correct expression should be:

(nhl...hql)” i ( (ylo) — glyle) - ZBls y)h? —ZBgs@,y)xs) % N (0,05(2,9))

s=0
where
Bis(%,y) = %m {f s;((m) ) ”;zg)g(y\w)] :
Baofe.9) = ~g(ule) + (=1 4 )g(="]7)
zleSg
. i [T paseh
Bui) = o3 3 1 o) | D giia)).

o3(2,y) = k" g(ylz)/a(@).

Proof. Under conditions given in Theorem 5.2 with a discrete random variable Y, we obtain a result
similar to Theorem 5.2, namely that all irrelevant variables can be smoothed out asymptotically.
Therefore, we will only consider the case where all variables are relevant in order to simplify the
proof.

Let

f.7) = 3K (E Xl i do) and () = - Y0 Ky(7, ),
i=1 =1

37
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where
K\ (7, X;) = Wh(fc XO)L(, X2 N),
XC
(z¢ XC H ( >7
d yd a >\8 (this#xs) 1(X'd77d
L(i ’XZ7)‘):H <C _1) (1—)\8) is_xs)’
s=1 S
A 1(Yi#y) B
Wy, Yi, ho) = < & ) (1 — No)20i=v),
co — 1
We write

o alE) — g(lE) aE) _m
i) — (vl = LD —IWIDIAD) it

Then Elmn(y,z)] = E[f(y,z)] — g(y|z)E[i(z)] (because §(y|z)i(z) = f(y,z)). Following the
approach used in the previous chapters (i.e., basic calculus and change of variables) we have that

E|f(y.3)| = f45.2) = 2of (.7 (ZA) +— > 1 £ f(E )

szSd
1,04, ) f (y, 7, 5%) + KZQZh fss(y, @ —i—o(ZhQ—i—Z)\)
eSSy

The above result is quite easy to understand. When (Yi,X'id) = (y,:?; ), the corresponding
discrete kernel is J[;Lo(1 — As) = 1 — Ao — Y2011 A + O(|A]?), where [A? = Y 1Lo A2 When
(Y;, X&) # (y,7?), the leading term is that for which only one component differs, say only the s
components differ from each other. This gives the term associated with cj‘jl (s =0,...,71). The
bias that arises due to the continuous z¢ has the familiar order, h2.

Next,

L(0%, (", )

E ()] = () - (Z As>
s=1 ‘desx
+ %KQ Zl hgﬂss(j) +o (Z hz + Z )\s) .
s=1 s=1 s=0

Hence,

E[in(y, 7)) = E[f(y,7)] - ’(y\f) (7))

=—Xof(y,7) +7 Z f(z%, %)
szSd
> - As -3 1 (v [F o) — i g i) |
s=1 % 74eS;

q1 q1 T1
L3 s 07) — oD+ o (z S As) |
s=1 s=1 s=0
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Also, it is easy to show that
Var [inly, 5)] = Var [ £(3,2) - g(yl2)i()]
1 1 q1 !
= kO f(y,B) +o| —-—+> B2+ > N
nhy - hg, f(y, ) (nhl---hql 521 g )

Note that n(y.2) n(y.2)
my,x my,x -
= — + (s.0.) = go(y|z) + (s.0.),
90 - T (s0) = dolyle) + (5.0)
where Go(y|z) = m(y,z)/pu(z). The asymptotic distribution of §(y|z) is the same as that of go(y|z).
Obviously, E[go(y|z)] = Eliin(y, 2)]/u(x) and Var(go(y|z)] = Var[im(y, 7)]/u(z)?. Therefore, by
Liapunov’s Central Limit Theorem, Slutsky’s Lemma and noting that ¢g(y|z) = g(y|Z), we have

g(ylz) =

R 1/2 a . 1 .
(nhl s hlh) [g(ykﬁ) - g(y|1") - Z Bls(jvy)hi - ZBQS(-’E,?J))\S i) N (05 U§(f7y)) y
s=1 s=0

where Bis (s=1,...,q1), Bog, Bas (s=1,...,71) and ag(j:,y) are defined in the beginning of this
solution. This completes the proof.
O

Exercise 5.2. Using the data underlying the local constant kernel estimate of an earnings profile
(log income versus age) presented in Pagan and Ullah (1999, page 155) that we used in Exercise
2.11 (which is also part of the np package (Hayfield and Racine (2008))), generate the PDF of
earnings conditional on age using least squares cross-validation.

R> data(cps71)

R> attach(cps71)

R> fhat <- npcdens(logwage~age,bwmethod="cv.1ls")
R> summary (fhat)

Conditional Density Data: 205 training points, in 2 variable(s)
(1 dependent variable(s), and 1 explanatory variable(s))

logwage
Dep. Var. Bandwidth(s): 0.162

age
Exp. Var. Bandwidth(s): 2.71

Bandwidth Type: Fixed
Log Likelihood: -110

Continuous Kernel Type: Second-Order Epanechnikov
No. Continuous Explanatory Vars.: 1
No. Continuous Dependent Vars.: 1
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Next, plot the resulting conditional PDF and compare your estimate with the conditional mean
function you generated in Exercise 2.11. Can you readily visualize the conditional mean function
from the conditional PDF function?

R> plot(fhat,view="fixed",phi=85)

[theta= 0, phi= 85]

AR
AR
\:{\\\\\\\\\\\‘\‘

N\

it
AN ALY
RRRRRRRR

Looking down on the estimated conditional density, you can certainly visualize the conditional
mean running along the ‘ridge’ (i.e., the average value of logwages conditional on age). Note that
logwage is on the ‘vertical’ axis, age on the ‘horizontal’.
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5. CONDITIONAL DENSITY ESTIMATION: SOLUTIONS




Chapter 6

Conditional CDF and Quantile
Estimation: Solutions

Exercise 6.1. We will use the notation fy,.(y) = f(y|z) and F,(y) = F(y|z) to denote conditional
PDF and CDF of Y =y given X = z. With this notation we have (using — [ = [% )

olo ()= / (25 o

G(v) fyx,(y — hov)dv

= — G(v)dFmXi (y — hov)
+o0 +00
=~ GOFxyhov)| o+ [ w)Ex o~ hovydo
oo 1 2, 2 2
=0+ [ o) (FIX) — FolylXihov + 3 Fon(ul Xk + o(03)) o

1
= F(y|X;) + §m2h%F00(y|X¢) + o(h).
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44 6. CONDITIONAL CDF AND QUANTILE ESTIMATION: SOLUTIONS

Using integration by parts we have

— Y, +o0 o
E[G? (y hOYl) 1X] :/ G2 (y hoyz) s ()

— by +: G2(0) f,1x, (y — hov)dv

o ;OO G2(0)fyx,(y — hov)do (since — [12° = [*)

- _ :o G*(v)dF,x,(y — hov)

= —G2()Eyx, (y — hov) f: 42 :O G(v)w(v)Fy x, (y — hov)du

=0+2 :o G (v)w(v) (mei (y) — Fyx, 0(y)hov + O(hg))dv

2 [ Gule)(FuIX) - FlXhoo + O())dv  (since Fyx, () = F(u1X0)

—00

= F(y|X;) — hoCrFo(y| Xi) + O(h3),

where Fy(y|X;) = 0F(y|X;)/0y, Cr = 2 [ G(v)w(v)vdv, and we have used 2 [ G(v)w(v)dv =
[dG?*(v) = G*(00) — G*(—00) =1 —0 =1 (since G is a CDF).

Exercise 6.2.

Exercise 6.3. The proof of Theorem 6.3 follows exactly the same steps (arguments) as the proof
of Theorem 6.4 which is presented in Li and Racine (2007, pages 213-214).

Exercise 6.4.

Exercise 6.5. The hints given in Li and Racine (2007, pages 216) provide a detailed solution to
this exercise.

Exercise 6.6.



Chapter 7

Semiparametric Partially Linear
Models: Solutions

Exercise 7.1. The hint given on Li and Racine (2007, page 246) provides the solution to this
problem. Since

where Y; = Y; — E(Yi|Z;), Xi = Xi — E(X;|Z;) and Y; = X! + u;, we have

Vi(Bing — B) = V7 im' z (RLB+u)— B
\/ﬁ( ZXX’ Z;Xu
I o] 1 &
= n;X ] n;XU

noo_o . -
By the law of large numbers, we have 1 > XX/ L BXX]] = @ = @. Also, E[Xu;] =

E{X;Eu;|X;, Zi]} = 0, and Var[fc ui] = EZ[Xiui(Xiui)’] = Blu2X; X! = B{E[}X;X!|X;, Z]} =
E{E[u2|X;, Z)X; X!} = E[0*(X;, Z) X; X!] = V.

Using Lindeberg’s Central Limit Theorem, we have

1w -~ d
— Y Xu; 5 N(0,7).
Vi
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46 7. SEMIPARAMETRIC PARTIALLY LINEAR MODELS: SOLUTIONS

Hence, we have

4 31N (0,)
=N (0,7 w(e 1Y)
=N (0,271 To ).

Exercise 7.2.
Exercise 7.3 Ci)f 2 ® is proved by Li and Racine (2007, Proposition 7.2, page 243)

@i fi = [(Y; = Vi) — (X; — X;)' 8] fi is an estimator of u; f;. One can show that Uy =Ws +0p(1),

A~ n ~ A~ A,
where \Iffl = % Z u?ff(X, — Xz))(Xz — Xi)/ff.
1=
Then by the same steps as in the proof of Proposition 7.2, it can be shown that ¥ ¢
LS ViV and Vi = X, — BE(Xi|Z).

where W f2 = i Uj
Hence, U = f2+0p(1) it \If by a standard law of large numbers argument.

= ilf?_‘_op(l)?

Exercise 7.4.
Exercise 7.5.

(i) was proved in the proof of Lemma 4 in Li (1996).

(ii) was proved in the proof of Lemma 5 (iii) in Li (1996).
The proofs are quite long and we will not reproduce them here. Readers interested in the

proof can consult Li (1996).

Exercise 7.6.
Exercise 7.7.
() If B(u?|X;, Z:) = 02(Z;), we have E (%|Z> -
So from (7.32) in Li and Racine (2007), we have

(1)

o BGHa)
Vo=ES |X;
B ()
1B
2

LE(X:|Z).

/0'

£ (1) !

Z
7| Zi Z
[ S E (Xi|Z) (XilZ

/U?

)

\ )—‘

= E{|X;

=0

1
2
U’i ag

= E{[Xi — B(X:|Z)|[Xi — BE(Xi| Z)] )07} -
(ii) There is a typo in (7.33) of Li and Racine (2007). The left-hand-side of (7.33) should be
Vo.r, not Vg, so Vp g is defined by (7.33) in Li and Racine (2007). 0?(Z;) is not defined when
2(Z;) by 0%(Z;) = E(u2|Z;), we know

E(u?|Xi, Z;) # E(u?|Z;). However, if we still define o
that Vo — V. g is negative semidefinite because Vj is a semiparametric efficient bound



Chapter 8

Semiparametric Single Index Models:
Solutions

Exercise 8.1.

(i) E(Y[z) =22,—01yP(yle) = (P =1|z) + (0)P(y = Oz) = P(Y = 1|z).

(ii) When y € {1,2} we have E(Y|z) = > _, ,yP(ylz) = ()PY = l|z) + (2)P(y = 2|z) #
P(Y = 1|z).

Exercise 8.2.

Exercise 8.3. The purpose of this exercise was to outline a proof for Theorem 8.1. The correct
statement should ask students to derive the result of Theorem 8.1 of Li and Racine (2007, page
255) based on (8.1) and (8.2) below.

We assume that h = en~/5, where ¢ is a positive constant. Define (we omit the trimming
functions for notational simplicity)

n

S(0) =Y [Yi — E(Y;|z}B)], (8.1)

i=1

where E(Yi[a}8) = (nh)™' 32 YiKijs/B(xiB), p(aB) = (nh) ™' 3, Kijp.
Then Ichimura (1993) and Hérdle, Hall and Ichimura (1993) have proved the following:

S(B) = S(B) + (s.0.), (8.2)

where (s.0.) contains terms unrelated to /3 (they may be related to 5y) and terms that are of smaller
orders than S(53), and

n

S(B) =Y {Yi — Elg(x}Bo)|iB]}. (83)

i=1

Noting that (8.3) is a parametric model, minimizing (8.3) with respect to 8 leads to a NLS
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48 8. SEMIPARAMETRIC SINGLE INDEX MODELS: SOLUTIONS

estimator of 3. Applying a Taylor expansion to g(x}5y) and E[g(z}80)|z;5] at § we obtain

g(xiBo) = g(x;ﬁ)+g<1 (23 8)a;(Bo — B)
= g(x}p) + (x Bo);(Bo — B) + (s.0.) (8:4)
Elg(a}Bo)|7i8] = g(ip8) + [ ) (@8)}(Bo — BB
= g(«iB) + g («}Bo) Elwi|z}Bo]' (Bo — B) + (s.0.) (8.5)

From (8.3), (8.4), (8.5) and using Y; = g(z}80) + u;, we obtain

S(B) = Z {Uz — gW(@}Bo) [s — Bxi|2}50)] (8 — ﬁo)}2 + (s.0.)
=1

= Z [uz —2H(B — ,80)]2 + (s.0.),

=1
where
2 = g (@}Bo)[ws — E(as]2)o)]-

Minimizing the leading term of S(3) with respect to 3 gives 3 — fy = (>, 22717, ziu;. Hence,
we have

V(B — Bo) = [ ZZZ ] \}ﬁZziuiiN(O,Q), (8.6)

where Q = V71XV~ with V = E[z;2]] and ¥ = E[0?(2;)2;2]], which is the same as Theorem 8.1
of Li and Racine (2007, page 255) except that we omit the trimming function.

To complete the proof for Theorem 8.1, one also needs to establish (8.2). The proof of (8.2)
can be found in Ichimura (1993) and Hérdle et al. (1993). Since the proof is quite long we will not
reproduce it here.

Exercise 8.4.



Chapter 9

Additive and Smooth (Varying)
Coefficient Semiparametric Models:
Solutions

Exercise 9.1. There are some typos in the expression of this exercise. The correction expression
should be:
“Let g(z) be defined as in (9.25) show that

q
~ K d
Vah [3(2) - 9(2) — v — Zu()] S N (o, > va<za>> ,
where v = Y0 v, =30 piay Vo = va(z) and pa = pa(zq) are defined in Li and Racine
(2007, page 294).”

Letting cg = E(Y;) then we know that ¥ — cg = O,(n~'/2). Note that g(2) = Co+ 3.2 _; ga(2a)
and Y — Cy = O, (n"1/2). Then by (9.25) and using (9.33) we have

+ Op(ﬁ)}

by (9.33) and the fact that go(z4), @ = 1,..., g, are asymptotically independent of each other (their
asymptotic covariances are zero by (9.33)).

Exercise 9.2.
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50 9. ADDITIVE AND SMOOTH (VARYING) COEFFICIENT SEMIPARAMETRIC MODELS: SOLUTIONS

Exercise 9.3. Note that ¢; = W; — X/3,,(Z;) can be estimated by fl =W; — X{Bw(Zi). Hence,
consistent estimators of A and B are given by

n n
A 1IN A A I A2
A=n"1>" (¢ and B=n"1>"Gljaz,
i=1 i=1

where @; = Y; — W/4 — X!8(Z:), B(Z;) is defined in (9.69) with ~ replaced by 4, 4 is the OLS
estimator of v based on (9.70).

Exercise 9.4.



Chapter 10

Selectivity Models: Solutions

Exercise 10.1. Using the result that if <U1) ~ N <(,u1) , (UH 012>>, then

V2 H2 021 022
(0%
E(va|vy > ¢) = pa + pa;fg((a)), (10.1)

where p = 012/\/011022, @ = (¢ — ,ul)/o*%f, (1) and ®(-) are the PDF and CDF of a standard
normal random variable.
Using (10.1) we have
E(ugi| X, Y1 = 1) = B(ugi| Xi, ur; > —X1;81) = E(ugi|uii > —X71;61)
012 G(=X1b1/o11”)
- yom Xy
1022 ®(X1;61/0117)
1/2
CI)(XiiB/UI{ )

=0

The last equality follows because ¢(v) = ¢(—v).
Exercise 10.2.

Exercise 10.3.
(i) Under HE, Yai = X, + ug; with E(ug;|Xi, Y2 > 0) = 0, we have
Qg; = Yai — X2 = X3;(B2 — B2) + uzi = ug; + Op(n™1/?),

and
i = Vi — X{;80 = X381 — B1) + uni = uai + Op(n~1/?),
one can show that

~ 1 ny ni
I, = m ; ;UZz"Uag‘Kh(Uli —ug;) + (s.0.) = Iio+ (s.0.).

o1



52 10. SELECTIVITY MODELS: SOLUTIONS

It is obvious that E(I; ;) = 0 because E(ug;|u1;) = 0 under Hg. It is straightforward to show
that Var(I3) = E[(Iﬁ70)2] = O((n?h)~1) = 0o(1) (by a derivation similar to that in the proof
of Theorem 12.1 of Li and Racine (2007)).

Hence, I} ; = 0,(1) which in turn implies that Ie = I3 o + (s.0.) = 0p(1) under Hg.

(ii) Under HY, tig; = Ya; — Xb; o = Xb,(Ba — Ba) + g(uri) + ugi = g(u1s) + ug; + Op(n~'/?), where
g(u1;) = E(ug;i|ui;). Then it can be shown that

ny ni

I = Z Z w1y) + u2i[g(u1;) + uoj] Kp(u1; — uz;) + (s.0.)
i=1 j#i
ny ni

— Z Zg uh ul] Kh(ulz - UQZ) ( )

i=1 j#i
IZJ + (s.0.).

Now,
E[I; 1] = Elg(ui)g(uis) Kn(u1i — u2i)]

://f(uli)f(u1j)g(uu)g(U1j)Kh(u1¢—um)duudulj
://f(uli)f(uli+hv)g(uli)g(uli+hU)K(U)du1idv

= [/ f(uli)f(uug(uli)g(uu)duh} [/ K(”)dv] +O(h?)

:E{f(uh-) uy;)] }—i—o =C+o(1),
where C' = E { f(w1;)[g(w1:)]?} > 0 under H{.

It is straightforward to show that Var(I} ;) = o(1). Hence, =1 1+ (5.0.) = C+op(1).

(iii) Under H{, I¢ = C + 0,(1). Also, it is easy to see that 62 is O,(1) under either H¢ or

H{ (6, is defined in Li and Racine (2007, Proposition 10.1)). Hence, T, = nh'/21%/6, =
nh'/2C 4 (s.0.) which diverges to +oo at the rate of nh!'/2. The test statistic has a standard
normal distribution under H§. If we choose a 5% level test, the (one-sided) critical value is
1.645, hence we have

P(reject H§|H is false) = P(T),, > 1.645) — 1 as n — oo

because T,, — 4+o00. Hence, the test statistic 7, has asymptotic power equal to one.



Chapter 11

Censored Models: Solutions

Exercise 11.1. Letting x ~ N(,0?), then the density for truncated variable z|(z > ¢) is

flx) _ f=)

Plx >c] [1-®(a)]’

where oo = (¢ — p1) /o because

P($>c)—1—P(m§c)—1—P<x_'u§c_'u> =1 - d(a).

Hence, one can show that

_ S wf(@)de ¢(a)
Elz|lz > ] = (1= o(a)] —,u—i-au ()]

_ ¢(=a)

—ET T Ca)

because ¢(—a) = ¢(a) and 1 — ®(a) = ®(—a).
Applying the above result to z = ¢; ~ N(0,0?), we have 1 = 0 and ¢ = — X//3. Hence we obtain

¢(XiB)
(X;8)

Eleile; > — X8l =0

Exercise 11.2.

Exercise 11.3. Proof. We have that

Foly)=1-— - " :
v E [ n—1i+ 1]
i=1
where ‘ ,
Sim) Yyl n—d 10" Gum Ty 1 1%
Win = . H - = —" l——7 .
n—z+1j:1 n—j+1 n—z+1j:1 n—j+1
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It is easy to see that

5[j:n] 5
1—; = 1—%,foranyj.
n—j7+1 n—j7+1

For any y € R there exists an integer m > 1 such that Zy,., <y < Z(,41).,- Then we have that

- o Ofiin]
Fn(y)zl—H 1—m ;

i=1
m i—1
~ Oizn) Oljin) }
Fo(y) = — -
) ;n—z—l—ljl;‘[l[ n—j+1
_ O] O2:m] 1 O[1:m] N O3:m] 1 O[1:m] L 02:n) L
n—14+1 n—-2+1 n—1+1 n—3+1 n—1+1 n—2+1
6[m:n] o 5[]71]
+n—m+1 ]1;11 {1_n—j+1]
M Oin)
SRR I N [p— ) -
i[[l [ n—1+ 1}
So Fn(y) = Fn(y), which completes the proof. O

Exercise 11.4.



Chapter 12

Model Specification Tests: Solutions

Exercise 12.1. Letting p; = E(m{) then we have u; = us = 0. Note that E(y;) = E(a + iz +

B3} + ui) = o, B(xiy;) = Elzi(o+ rxi + B3z +wi)] = Bupe + Bapa, E(x7yi) = aps,
(i) The least squares estimator based on model (12.3) is
&
B | =(X'X)IXY = (X'X/n)"Y(XY)/n
B2
-1
L EEe T (AT
“liEn 1% aken) i
-1
1 0 pe «
210 pu 0 Bipe + B3pig
p2 0 gy Qfig
1 H2pia 0 — 2 a
= 2(in — 12) 0 jpu—p3 0 Bipz + Papa |
NZ lu’4 )LLQ _MQ 0 ,LLQ Oé/,LQ

from which we obtain By 2 (apus — )/ [ua (s — p3)] = 0.

(ii) It is easy to show that \/ﬁﬁg — N(0,V2), where V5 = plim[n Var(ﬁz)} is a finite positive
constant. Hence, the t-statistic: t5 = Ba/r/Var(Bs) = /nfa/\/nVar(Bs) LN N(0,1).

Therefore, its asymptotic power equals the size of the test.

Exercise 12.2.

Exercise 12.3.
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12. MODEL SPECIFICATION TESTS: SOLUTIONS

(i) Obviously

E(Is,) =0 and

E[HI?TLHQ]: n_12ZZZZEuzuz’ZZ Khz]Khz]]

i ogFL i A

— n_12ZZZE [ Z}Zj Kpij K ij]

©og#F g

- e S S P

1 jF

n_12zz Z ZK/HJKMJ]

i JFL §FL ]
_ n—1
= n'Elo?(x1) Z5 22K 5] + mE[&(ggl)ZgZ?)Kh,mKh,lg]
=n'O ((h1...hg)™ ") +O(1) = O(1).

Hence, Iz, = Op(1).

EHISn,tsH - ZZZthsthz]

i jFi

ZZE | Zit ZisKn i) = El| Z11 225K 12]] = O(1).
1 j#i

Hence, I3, = O(1).

(ii) Under HY, ; = u; + X!(8 — B) = u; + O, (n=Y/2), and 42 = u? + O, (n~/2). Hence,

~92 q A22
o0 = n_lzz GKG

1 jF£i

= n_quZu Khzj (s.0.) =02+ (s.0.).

i jFi

(h1 .. ho)E [ufuiKF ;)]

(h... hq)E[UQ(xi)Jz(xj)KfQL,ij]
_ 2/04(xi)f(:v,~)2dxi + (5.0

=2F [o*(X;) f(X;)] + (s.0.)
=02+ o(1).

It is straightforward to show that Var(o? o) = o(1). Hence, 62 = 02 + (s.0.) = 04 + 0p(1).

a
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(iii) Obviously E(I1,) = 0 and by following the same arguments one can show that Var([y,) =
(n*Hg) ™ (02 + o(1)), where Hy = hy ... hy. Hence, nH;/QIm ~ (0,02).
Now let Hn,ij = UZU,JK(XZ — Xj)/h), Wi = (Xi,ui), Gn,ij = E[Hn,ilHn,jl’Wia Wj]. Then it is
easy to show that E[G), ;] = O(Hg’), E[Hé,ij] = O(H,) and E[Hfm-j] = O(H,). Hence,
E[Gyj] +n 'E[H,, ;]
’ =0 (H, Hy) ™) = o(1).
(A, (Hat (0o ™) = o)

Hence, the condition for Hall’s (1984) Central Limit Theorem holds and we have
ny/Hyln 5 N(0,02)
(iv) By (i) - (iii) we have under H§ that
nHY218/\/62 = nHY?11,/\/02 + (5.0.) = nHY 11,/ \/02 + (s.0.) % N(0, 1),

Exercise 12.4.

Exercise 12.5. We will consider the case of a linear model: Y = X~ + u. Since Y* = X4 4+ u*, we
have

;y* — (X,X)_ley* — ;y + (X/X>—1X/u*
=5+ (X'X/m) " X" 0 = 5+ 0, (n1?)
since X'X/n = E(X;X]) + op(1) and X'u*/n = Oy (n=Y/2). This is because E*(X'u*/n) =

nT 30 X B (uf) = 0 and E* [[[(X'w*/n)|P] = n72 30, 30 X{XGE* (uju;) = n™2 35, X{ X} =
Op (n71).

Exercise 12.6.

Exercise 12.7. Define H, ;; = 2(K,f7ij)2(Kg’ij)2 and note that &]% = ﬁ Doy 2 isi Hngj s a

second order U-statistic. By the H-decomposition we have

= 26" { E[f1(X:)°] + o(1)} 67 { E[f2(Y0)*] + 0(1) }
= 012: +op(1).

67 = E[H] ;] + 0p(1) = 2E[Kp, (X; — X;)|E[Kp, (Y; — ;)]

Using Lemma A.16 it is easy to show that Var(&?) = o(1). Hence, &J% = O'J% + 0p(1).
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12. MODEL SPECIFICATION TESTS: SOLUTIONS




Chapter 13

Nonsmoothing Tests: Solutions

Exercise 13.1.

E1Z0IE] = B| [z @ ko)

E

[ )+ ol )

{
=5 { [ P + o) o (o)}
< CE[0*(X)]

provided that |H(z;,x) + ¢(z;, )| is a bounded function and that [dv(z) is finite. If v is the
Lebesgue measure (dv(z) = dx), then we require that the integration set over z is a bounded set.

This does not necessarily restrict X; to take values in a bounded set because, even if X;’s support
is unbounded, one can map X; into a compact (hence, bounded) set, say H(X;, z), provided that
H(X;,z) and X; generates the same o-algebra.

Exercise 13.2.
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13.

NONSMOOTHING TESTS: SOLUTIONS




Chapter 14

K-Nearest Neighbor Methods:
Solutions

We first make some comments on how to work out the problems in Chapter 14.

(i) If we have a term like A(X;,z) = Ry %g(z;)w((x;—x)/R;), where z; is random and z is a given
(fixed and non-random) point, we can use Lemma 14.1 to evaluate such a term easily. This is
because we only need to conditional on z; to compute terms like E[R; Yg(z;)w((x;—x)/Ry)] =
E{R;"E[g(z;)w((x; — z)/Rs)|7;]}. Lemma 14.1 can be used to readily yield this result. This
is the case for exercises 14.1 and 14.2.

(ii) If we have a term like R; Yg(z;, zj)w((2; — zz)/Ri), where both z; and z; are random variables,
then Lemma 14.1 is not convenient to use. In this case we first use (14.32) because in this
way we first condition on (x;, R;) and integrate out z;. Then we can use Lemma 14.1. This
is the case for exercises 14.3 to 14.5.

Exercise 14.1. Note that there is a typo in the expression of this exercise. It should be Al1 =o(1),
not Ay” = O(n™1).

AYE = ﬁ Yo wig(z; — x), where w;; = w((X; — 2)/Ry), is defined in (14.37) in Li and
Racine (2007,xpage 436).

VaT(A;vlf) =3 Z Var [ —(a+2)y, 2w — :c)} < — ZE [R;2(q+2)wzw(xi — 1)

n

_ lE {E [R;“q”)w?,x(fci —z)(xi — x)/‘R“’} }

n

_lp {f(x)R;(q“) /w(v)%v'dv] + (s.0.)

= f(“f) [R; )] + (s.0.)
— ngn_lO ((k/n) q+2)/q> -0 ((nQ/kQ+2)1/Q> — o(1)

by Lemma 14.1 and Assumption 14.4 that n?/k9%2 = o(1) (Li and Racine (2007, page 421)).
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Exercise 14.2.

Exercise 14.3. We have

2
1 @ 1 1 R
Sg—g = " Z - [nz —gi)R; wzg] (I/f1)?
i=1 i=1 »
2
< 5—21 i 1 i(g — gi)R; Yw;
= n 4 n L9 i) 1l Wi
i=1 J#
n3b2 Z Z R q - gl wz] + =53 3b2 Z Z Z R — G wu(gl - gz)wzl
=1 j#i 1=1 j#i l#i,5
=51+ 5.

1 _
B|Si) =~ B[R (01 — 92) ;)

nb?
1 _
= WE {E [Rl 2qw%2(91 — g2)?|z1, RJ}
k
= 22 R2qG Ri) /f 22)wis(g1 — g2) dzz] by (14.32)
1)

= nszE [R(fGl(Rl)f(Zl)R1g(1)(zl)//w(v)vi/dvg(l)(zl)Rl} + (s.0.)

k

= 0 ((hfm/=2) = 0 (/o)

|21 + (8.0.)

R{?G(Ry)

by Lemma 14.1.
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EISa] = b7 | B[R (91— 92) (91 — go)wrows |

=b ’E {Rl_qE [(g1 — g2)wiz|z1, R1] E [Rl_q(gl — g3)wis|2, 31} H

o[ (rat i)}

2 2
- n];b2E { [G&%l) /f(zl + Rlv)[g(zl + Ryv) — 91]W(U)dv] }

by Lemma 14.1.
Exercise 14.4.

Exercise 14.5. This is Lemma 8 of Liu and Lu (1997). We will not reproduce it here.
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14. K-NEAREST NEIGHBOR METHODS: SOLUTIONS




Chapter 15

Nonparametric Series Methods:
Solutions

Exercise 15.1. Under the conditional homoskedastic error assumption, we can estimate X by

n =
i

=0 [1 ZPK(%‘)I?K(%)'] = 6%Q,

where 6% =n~1 3. 42,

Now we have

VK — pK(J,‘)QAiliQilpK(l’) — a_QPK x)QflpK(x)
= 5% (2)Q1p" (2) + (s.0.) = 0%
= Vk + (s.0.),

where we have used Lemma 15.2 Q = Q + O,((o(K)K/n), where {y(K) = O(K) for power series
and (o(K) = O(VK) for splines (e.g., Newey (1997)) and 62 = n=1 >, u2 + 0,(1) = 0% + 0p(1).
Hence,

~— A - A d
n20 2 (G(a) — g(@) = 02V 2 (3() - g(2) + (5.0) = An + (s.0) % N(0,1)
follows the arguments given in the hint to Exercise 15.1 in Li and Racine (2007).

Exercise 15.2.

Exercise 15.3. Write a program for additive models using a power series estimator and use Wang
and Yang’s (2005) BIC criterion to select the significant variables.
See the exercise below.

Exercise 15.4. Repeat Exercise 15.3 but use the leave-one-out method to select the number of
series terms.

Here we conduct a similar exercise using the mgvc library in R. We shall use the wagel data by
way of example. See 7gam for details. GACV.cp uses a Cp/UBRE/AIC criterion.
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66 15. NONPARAMETRIC SERIES METHODS: SOLUTIONS

R> library (mgcv)

R> data(wagel)

R> attach(wagel)

R> model.gam <- gam(lwage”s(educ)+s (exper)+s(tenure) ,method="GACV.Cp")
R> plot(model.gam,pages=1)

0.0 05 1.0
|

s(educ,2.68)

s(exper,5.62)

-1.0
-1.0

T 1 T T T T
0 5 10 15 0 10 20 30 40 50

educ exper

s(tenure,2.5)

tenure

Exercise 15.5. Multiplying both sides of (15.35) by p;(z.) and integrating over z, we obtain
[e.e] [ee]
/ga(za)pj(za)dza = Zeal /pl(zoz)pj(za)dza = Z‘galélj = Hajv
=1 =1
where 0;; = 1if j = [ and 0 otherwise (the Kronecker delta function).

Exercise 15.6.



Chapter 16

Instrumental Variables and Efficient
Estimation of Semiparametric

Models: Solutions

Exercise 16.1. This exercise requires the assumptions that E(S;—1) = 0, E(Z} ;) = 0 and that
Z;_1 is independent of Y;_o. With 6(Z;) = Z? we have Y;_1 = Y; 2 + Z? | + uy_1 so that

E(Yi1Zi1) = E(Y;2Z11)B+ E(Z} 1) + E(w-1Z;1) = 0

since we have assumed that E(Z;—1) = 0, E(Z}_|) =0, Z;_1 is independent of Y;_o and u;_q (for
example, if Z; is an i.i.d. sequence).

Exercise 16.2.

Exercise 16.3. Proof. From the definition, we have

dm(X dp(Z
dm(X,00) o= pfdeZo0) iyl forallae A
do do

By Jensen’s inequality and the law of iterated expectations, it is easy to obtain that

2
o — collu = | 2 { [W’O@)m - ao>] /a2<X>}

da

IN
&=
/—’H/—/D?/—/H




16. INSTRUMENTAL VARIABLES AND EFFICIENT ESTIMATION OF SEMIPARAMETRIC MODELS:
68 SOLUTIONS

for all a € A.
This completes the proof.
O
Note that the Jensen’s equality claims that: If ¢(V') is a convex function, then ¢(E(V|X)) <
E[¢(V)|X]. Here we choose ¢(V) = V2 (which is a convex function) and V = V(Z) = W(a -

CMQ).



Chapter 17

Endogeneity in Nonparametric
Regression Models: Solutions

Exercise 17.1. Given that E(u;|Z;) = 0 we obtain from (17.21) that
E(Yi|Z;) = Elg(Zi)| Zi]- (17.1)

Below we start from the left-hand-side of (17.25) and show that it equals the right-hand-side of
(17.25). Using (17.1) we have

EIE(Y|2) foa(w,, 2)) = EIE(g(X)|2) fur (1, 2)
—5{| [ sttt 211 @)t 12t 2)
— [ £ s fosti,2) £ (o e, 2
-/ [ / fm<x,z>fzz<w,z>dz} g(w)da

~ [ te.wig(a)iz = (Tg)(w)

Exercise 17.2.
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17. ENDOGENEITY IN NONPARAMETRIC REGRESSION MODELS: SOLUTIONS




Chapter 18

Weakly Dependent Data: Solutions

Exercise 18.1. We use the short hand notation a;;4; = Cov(Kp t, Kp t4j2). By stationarity we
know that a; s = as4j+j+s. Hence, we have

n—1n—t n—1
g E At t+j = E [at,i41 + Qg2 + -+ app)
t=1 j=1

= [al,z +aig+--F+ain]+laz+-Fagp] o+ [an—14]
=n—-1Naia+n—-2)a13+ - +2a1n-1+ain

n—1 n—1
Zn—] a11+g—n§ (1—j/n)ai ;.
7=1 j=1

Exercise 18.2.

Exercise 18.3. Since the bias calculation is the same as in the independent data case, we only
compute the variance term here. Letting Hy = hy ... hy, we have

n n—1
Var(f(a) = — {Z Var(Kpi) +2Y Y Cov(Kn e, Kn sm)}

n
s>1 t=1

[\

. {Z Var(Kp ) + 2n 2(1 —t/n)Cov(Kp 10, Kh,lm)}

n2
t=1 t=1

n n—1
1
<3 {Z Var(Kp) + 8nMy/ 0y (1 — t/n) g%/ (0F9) (t)}
n
t=1 prt
= *{0( ) +o(H, )}
=0 (( q)il)
because Ml/(1+5) - O(Hq—Qé/(lJré)) — O(Hq—l) by taking 0 < § < 1 as shown in the hint of this
problem.
Hence,

MSE[f(2)] = O (Jh|* + (nh1 ... he) ™)
which implies that f(z) — f(z) = O, (|n|? + (nHy)~1/?).
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18. WEAKLY DEPENDENT DATA: SOLUTIONS




Chapter 19

Panel Data Models: Solutions

Exercise 19.1.

(i) T is finite and N — oc.

Using f(2) — f(2) = 0p(1), where f(z) = (NT)~* Z;VZI ST Kpit.., it is easy to see that that

the leading term of [§(2) —g(2)] = [3(=)—g(2)](2)/ f (=) is [§(=) ~g(2)] f () / f (z) = M

where

Obviously Var[M;(z)/f(2)] = Var[M;(2)]/f(2)?, j = 1,2. Below we will only compute

Var[M;(z)].
Letting 4;(2) = .1, [git — 9(2)] Kpit.-, then My(2) = (NT)~1 32, Ai(2), we have

VGT Z VCL?“ gzt - Kh it z + Z ZCO'U git — )Kh itz (gzs - g( ))Kh,is,z]

t=1 s#t

| 2
=0 O(|h
<h1 ... hy + O(|A%)
since 7' is finite (T" = O(1)).
Cov[A;, Aj] = 0 for i # j by independence across the i-index. Hence,

Var[My(z)] = N2T2 Z {Var )+ ZZCOU ))}

1=1 j#i
O (VNS = O (N Hy) ) = o ((VH,) ).
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19. PANEL DATA MODELS: SOLUTIONS

Letting B;(z) = Y. wisKpit.», then My(z) = (NT)~1 3. B;(2), we have (since T is finite)

T T T
Var(Bi(2)) =Y _ Var(uaKni) + > Y Cov (K 2, is K is,-]
t=1 t=1 st

=To?(2)f(2)k%(h1...hy) "  +o0 ((ha... hq)_l) ,
where 0%(2) = E [u)|zi = 2], k% = [ K(v)*dv

For j # i, B; and B; are independent. Hence, we have

1 N N N
Var[My(2)] = 557 > (Var(Bi(2)) + Y > Cov(Bi(2), Bj(2))
=1

i=1 j#i

Finally, it is easy to show that Cov[M;(z).M2(2)] = o ((Nhy ... he)™!). Hence, summarizing
the above we have shown that

Var(M(z)) o?(2)Kk1

Var[M(z)/f(2)] = F(z)2 = F(z2)NThy ... h, +O((nh1"'hq)71)'

Thus, we have shown that the asymptotic variance of g(z) is indeed the same as given in
(19.4) of Li and Racine (2007). The asymptotic bias calculation is the same as i.i.d data case.
By Liapunov’s Central Limit Theorem, (19.4) follows.

Below we will first prove case (iii) because (ii) is a special case of (iii).
(Case (iii)) Both N and and T go to oo.

In this case we assume that the data is p-mixing across the ¢t-index (independent across the
i-index). By the same derivation as in (i) and noting that

|Cov[(git — 9(2)) Khn,it 2, (9is — 9(2)) K is,2]| < p(t \/VCW“ [(9it — 9(2)) Khn,it 2|V ar([(gis — 9(2)) K is =

:p( s)Var((giw — 9(= ))Kh,z't,z]

by the p-mixing and stationary assumptions.

Hence, for A;(z) = Zle(git — 9(2)) K it,», we have

Var(A Z Var((gic - Kh it, A+ Z Z Covl(git — ))Kh itz (9is —9(2 ))Kh,is,z]
t s#t
=0 (T|hy H )+ O (T|\h*H, ') = O (T|n*H; )

by following the same proof for the p-mixing time series data case (since 32, p(j) is finite).
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Hence, we have
1 N
Var[M(2)] = 5575 > {Var(4i(2)) + 0}
=1
=O (N7'T*T|n*H; ")
= O (|Jh*(NTH, "))
=o((NTH,)™).

For B; = S.F | wisKnt.. and My(z) = (NT)~' Y, Bi(z), we have

T T T
Var(Bi(z)) = Z Var(uigKp ) + Z Z Cov[uit Kp itz Wis K is 2]
t=1 t=1 sAt

=To?(2)f(2)k9(h1 ... hg) ™ + o0 (T(h1...hey)™"),
by the same proof as the proof of Theorem 18.2 (see Li and Racine (2007, section 18.10.2,
page 569)) because {2, u;t i, is a p-mixing time series data.

For j # i, B; and B; are independent. Hence, we have

N
Var[Msy(z)] = ﬁ {Z Var(B;(z)) + o}
=1

0*(2) f(2)K1 -
- NThy...hy +0((NTh1”.hq) 1).

Finally, it is easy to show that Cov[M;(2), Ma(2)] = o ((NThy ... hg)~'). Hence, summarizing
the above we have shown that
_ Var(M(z)) o%(z)Kk1

F(2 ~ F(x)NThy...h, 0 ((NThi .. hg) ™).

Var[M(z)/ f(2)]

(iii) (Case (ii)) N is finite and 7" — oco. The derivation is exactly the same as in (iii) above. When
N is finite we have O (NTH; ")) = O ((TH,y)™"'). Hence,

Var[My(2)] = O(|h|*(THy) ") = o (THy) ™), Cov[Mi(2), Ma(2)] = o ((TH,)™ "),
and

Var[Ms(2)] = - +0((NThy...he)™").

The remaining steps are the same as in the proof of (ii) above.

Exercise 19.2.



76 19. PANEL DATA MODELS: SOLUTIONS

Exercise 19.3. Let H;;_; be defined as in Li and Racine (2007, page 588). Then (19.40) can be
written as

0= ZK}L(Z@'L 2)Gi1 {_e/T—lZ_lHia[l—l] +er X e [g[l_l](zu) - G (O‘Oﬂ }

[0
1=1 1

N T
+ Z Z Kn(Zit, 2)Git {C,T—lz_lHi,[l—l] + Cif—lz_ICT*l {g[l_l](zﬁ) ~ G <a0>] }

aq

where Dj, Dy and D3 are defined in (19.41) of Li and Racine (2007). Solving for (Z()) gives
1

g (2
<z?> = (;}%&2) = D YDy + Ds3). Hence, (19.42) indeed gives the next step estimates of
U

( 9(2) )
gW(2)
Exercise 19.4.

Exercise 19.5. From (19.63), (16.64) and noting that v Nw'u/n = ﬁ > Wi 4 N(0,B) by
the Lindeberg Central Limit Theorem and (16.64), we have

VN(& — a) = VN (0'ww'v) ™' ww'u|(v'w/n)(w'v) /n] L (v'w/n)V Nw'u/n
4 (AA)TTA'N(0,B) = QTTA'N(0, B) = N(0,V),

where V = Q 'A'BAQ!.
Exercise 19.6.

Exercise 19.7. From Li and Racine (2007, page 622) we know that Q(z)[g;(2) — g(2)] = Ax +
op(N)s v = S0 B2+ (Nhy ... hg) V%), Ay = Ain + Aoy, Ain = Ain1+ Aine with E(Ain1) =
(k2/2)2) S0, h2grr(2) + 0p(3%_1 h2) and E(A1n2) = 0 (since E(u;s|Z) = 0).

Hence, we only need to consider Agy which is defined by (19.102):

1 N T T
Aoy = DD KnlZi2) Y 0"13(Zis) — 9(Zis)),
s=1

i=1 t=1

where §(Z;s) is the first step estimator of g(Z;s) that ignores the variance structure . This is a
standard local linear estimator for g(Z;s). Hence, from the result of Chapter 2 we know that the
bias is given by

2

r=1

E [Q(Zz ) - Q(Zis)|Zit = Z] = k ZE [ng(Zis)|Zit = Z] +0op (Z h12~> :

r=1



7

Substituting the above result into Asx and combining it with (19.101) we obtain the leading
bias for Q(z)[gp)(2) — 9(2)] = An + (s.0.) = Ain + Aoy + (s.0.) given by

q T T ¢
Z) Z h%grr % Z Z Z hEE grr is |Zzt = Z]
r=1 t=1 s=1r=1
q
z) {?Zh% } + (s.0.).
r=1

T
gﬂ"(z) + Q(z)_l Z Z E[grr<Zis)‘Zit = Z]

The above is the leading bias of ©(z)[gpj(2) — g(2)]. Premultiplying the above by Q(z)~! gives

the leading bias for g;(2) — g(2) as given in (19.104).

t=1 s=1
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19. PANEL DATA MODELS: SOLUTIONS




Chapter 20

Topics in Applied Nonparametric
Estimation: Solutions

Exercise 20.1. This follows from

(t+1)A 1 (t+1)A
/ (u — tA)du = §u2\u:m —tA% = (1/2) [2tA% + A?] —tA? = A?)2.
tA

Exercise 20.2.
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20. TOPICS IN APPLIED NONPARAMETRIC ESTIMATION: SOLUTIONS
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